Virtual Impedance Adaptation of Lower-Limb Exoskeleton for Human Performance Augmentation Based on Deep Reinforcement Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1186/s10033-025-01355-y
This paper proposes virtual impedance adaptation of the lower-limb exoskeleton for human performance augmentation (LEHPA) based on deep reinforcement learning (VIADRL) to mitigate reliance on model accuracy and address the ever-changing human-exoskeleton interaction (HEI) dynamics. The classical sensitivity amplification control strategy is expanded to the virtual impedance control strategy with more learnable virtual impedance parameters. The adjustment of these virtual impedance parameters is formalized as finding the optimal policy for a Markov Decision Process and can then be effectively resolved using deep reinforcement learning algorithms. To ensure safe and efficient policy training, a multibody simulation environment is established to facilitate the training process, supplemented by the innovative hybrid inverse-forward dynamics simulation approach for executing the simulation. For comparison purposes, the SADRL strategy is introduced as a benchmark. A novel control performance evaluation method based on the HEI forces at the back, thighs, and shanks is proposed to quantitatively evaluate the performance of our proposed VIADRL strategy. The VIADRL controller is systematically compared with the SADRL controller at five selected walking speeds. The lumped ratio of HEI forces under the SADRL strategy relative to those under the SADRL strategy is as low as 0.81 in simulation and approximately 0.89 on the LEHPA prototype. The overall reduction of HEI forces demonstrates the superiority of the VIADRL strategy in comparison to the SADRL strategy.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s10033-025-01355-y
- https://cjme.springeropen.com/counter/pdf/10.1186/s10033-025-01355-y
- OA Status
- diamond
- References
- 49
- OpenAlex ID
- https://openalex.org/W4415001994
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415001994Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s10033-025-01355-yDigital Object Identifier
- Title
-
Virtual Impedance Adaptation of Lower-Limb Exoskeleton for Human Performance Augmentation Based on Deep Reinforcement LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-09Full publication date if available
- Authors
-
Ranran Zheng, Zhiyuan Yu, Hongwei Liu, Junqin Lin, Bo Zeng, Longfei JiaList of authors in order
- Landing page
-
https://doi.org/10.1186/s10033-025-01355-yPublisher landing page
- PDF URL
-
https://cjme.springeropen.com/counter/pdf/10.1186/s10033-025-01355-yDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://cjme.springeropen.com/counter/pdf/10.1186/s10033-025-01355-yDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
49Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415001994 |
|---|---|
| doi | https://doi.org/10.1186/s10033-025-01355-y |
| ids.doi | https://doi.org/10.1186/s10033-025-01355-y |
| ids.openalex | https://openalex.org/W4415001994 |
| fwci | 0.0 |
| type | article |
| title | Virtual Impedance Adaptation of Lower-Limb Exoskeleton for Human Performance Augmentation Based on Deep Reinforcement Learning |
| biblio.issue | 1 |
| biblio.volume | 38 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11023 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Prosthetics and Rehabilitation Robotics |
| topics[1].id | https://openalex.org/T10784 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9976000189781189 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Muscle activation and electromyography studies |
| topics[2].id | https://openalex.org/T10114 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.9803000092506409 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3612 |
| topics[2].subfield.display_name | Physical Therapy, Sports Therapy and Rehabilitation |
| topics[2].display_name | Balance, Gait, and Falls Prevention |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.1186/s10033-025-01355-y |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4220650901 |
| locations[0].source.issn | 1000-9345, 2192-8258 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1000-9345 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Chinese Journal of Mechanical Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319730 |
| locations[0].source.host_organization_name | China Machine Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319730 |
| locations[0].source.host_organization_lineage_names | China Machine Press |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://cjme.springeropen.com/counter/pdf/10.1186/s10033-025-01355-y |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Chinese Journal of Mechanical Engineering |
| locations[0].landing_page_url | https://doi.org/10.1186/s10033-025-01355-y |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5020249061 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2465-7253 |
| authorships[0].author.display_name | Ranran Zheng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ranran Zheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100762516 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6613-6774 |
| authorships[1].author.display_name | Zhiyuan Yu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhiyuan Yu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100411968 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4046-163X |
| authorships[2].author.display_name | Hongwei Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hongwei Liu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100541025 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Junqin Lin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Junqin Lin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100732719 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7829-2811 |
| authorships[4].author.display_name | Bo Zeng |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Bo Zeng |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5072007157 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5732-1348 |
| authorships[5].author.display_name | Longfei Jia |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Longfei Jia |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://cjme.springeropen.com/counter/pdf/10.1186/s10033-025-01355-y |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Virtual Impedance Adaptation of Lower-Limb Exoskeleton for Human Performance Augmentation Based on Deep Reinforcement Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11023 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Prosthetics and Rehabilitation Robotics |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1186/s10033-025-01355-y |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4220650901 |
| best_oa_location.source.issn | 1000-9345, 2192-8258 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1000-9345 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Chinese Journal of Mechanical Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319730 |
| best_oa_location.source.host_organization_name | China Machine Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319730 |
| best_oa_location.source.host_organization_lineage_names | China Machine Press |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://cjme.springeropen.com/counter/pdf/10.1186/s10033-025-01355-y |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Chinese Journal of Mechanical Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s10033-025-01355-y |
| primary_location.id | doi:10.1186/s10033-025-01355-y |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4220650901 |
| primary_location.source.issn | 1000-9345, 2192-8258 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1000-9345 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Chinese Journal of Mechanical Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319730 |
| primary_location.source.host_organization_name | China Machine Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319730 |
| primary_location.source.host_organization_lineage_names | China Machine Press |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://cjme.springeropen.com/counter/pdf/10.1186/s10033-025-01355-y |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Chinese Journal of Mechanical Engineering |
| primary_location.landing_page_url | https://doi.org/10.1186/s10033-025-01355-y |
| publication_date | 2025-10-09 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4307479981, https://openalex.org/W2978079838, https://openalex.org/W2907645993, https://openalex.org/W2885815163, https://openalex.org/W2949794134, https://openalex.org/W4292517062, https://openalex.org/W2626078568, https://openalex.org/W4213104648, https://openalex.org/W2276448469, https://openalex.org/W2913889693, https://openalex.org/W2948332426, https://openalex.org/W4309078425, https://openalex.org/W3032317253, https://openalex.org/W2138300314, https://openalex.org/W2034922363, https://openalex.org/W2066275561, https://openalex.org/W2729893323, https://openalex.org/W1996907893, https://openalex.org/W2070054839, https://openalex.org/W2182339254, https://openalex.org/W2207129347, https://openalex.org/W2561015862, https://openalex.org/W2414517470, https://openalex.org/W2756487600, https://openalex.org/W3100789280, https://openalex.org/W3100366369, https://openalex.org/W2899718839, https://openalex.org/W2784449021, https://openalex.org/W3152878473, https://openalex.org/W3023302096, https://openalex.org/W3009915523, https://openalex.org/W3006422628, https://openalex.org/W2963177351, https://openalex.org/W2964114602, https://openalex.org/W2981479926, https://openalex.org/W3206620955, https://openalex.org/W2911087563, https://openalex.org/W3093922502, https://openalex.org/W4205430897, https://openalex.org/W3039737909, https://openalex.org/W4364302709, https://openalex.org/W4386857675, https://openalex.org/W2145339207, https://openalex.org/W4414535683, https://openalex.org/W2990714382, https://openalex.org/W3105609823, https://openalex.org/W3104883169, https://openalex.org/W3100958881, https://openalex.org/W3104876774 |
| referenced_works_count | 49 |
| abstract_inverted_index.A | 128 |
| abstract_inverted_index.a | 71, 93, 126 |
| abstract_inverted_index.To | 86 |
| abstract_inverted_index.as | 65, 125, 190, 192 |
| abstract_inverted_index.at | 139, 167 |
| abstract_inverted_index.be | 78 |
| abstract_inverted_index.by | 105 |
| abstract_inverted_index.in | 194, 216 |
| abstract_inverted_index.is | 42, 63, 97, 123, 145, 160, 189 |
| abstract_inverted_index.of | 7, 58, 152, 175, 206, 212 |
| abstract_inverted_index.on | 17, 25, 135, 199 |
| abstract_inverted_index.to | 22, 44, 99, 147, 183, 218 |
| abstract_inverted_index.For | 117 |
| abstract_inverted_index.HEI | 137, 176, 207 |
| abstract_inverted_index.The | 36, 56, 157, 172, 203 |
| abstract_inverted_index.and | 28, 75, 89, 143, 196 |
| abstract_inverted_index.can | 76 |
| abstract_inverted_index.for | 11, 70, 113 |
| abstract_inverted_index.low | 191 |
| abstract_inverted_index.our | 153 |
| abstract_inverted_index.the | 8, 30, 45, 67, 101, 106, 115, 120, 136, 140, 150, 164, 179, 186, 200, 210, 213, 219 |
| abstract_inverted_index.0.81 | 193 |
| abstract_inverted_index.0.89 | 198 |
| abstract_inverted_index.This | 1 |
| abstract_inverted_index.deep | 18, 82 |
| abstract_inverted_index.five | 168 |
| abstract_inverted_index.more | 51 |
| abstract_inverted_index.safe | 88 |
| abstract_inverted_index.then | 77 |
| abstract_inverted_index.with | 50, 163 |
| abstract_inverted_index.(HEI) | 34 |
| abstract_inverted_index.LEHPA | 201 |
| abstract_inverted_index.SADRL | 121, 165, 180, 187, 220 |
| abstract_inverted_index.back, | 141 |
| abstract_inverted_index.based | 16, 134 |
| abstract_inverted_index.human | 12 |
| abstract_inverted_index.model | 26 |
| abstract_inverted_index.novel | 129 |
| abstract_inverted_index.paper | 2 |
| abstract_inverted_index.ratio | 174 |
| abstract_inverted_index.these | 59 |
| abstract_inverted_index.those | 184 |
| abstract_inverted_index.under | 178, 185 |
| abstract_inverted_index.using | 81 |
| abstract_inverted_index.Markov | 72 |
| abstract_inverted_index.VIADRL | 155, 158, 214 |
| abstract_inverted_index.ensure | 87 |
| abstract_inverted_index.forces | 138, 177, 208 |
| abstract_inverted_index.hybrid | 108 |
| abstract_inverted_index.lumped | 173 |
| abstract_inverted_index.method | 133 |
| abstract_inverted_index.policy | 69, 91 |
| abstract_inverted_index.shanks | 144 |
| abstract_inverted_index.(LEHPA) | 15 |
| abstract_inverted_index.Process | 74 |
| abstract_inverted_index.address | 29 |
| abstract_inverted_index.control | 40, 48, 130 |
| abstract_inverted_index.finding | 66 |
| abstract_inverted_index.optimal | 68 |
| abstract_inverted_index.overall | 204 |
| abstract_inverted_index.speeds. | 171 |
| abstract_inverted_index.thighs, | 142 |
| abstract_inverted_index.virtual | 4, 46, 53, 60 |
| abstract_inverted_index.walking | 170 |
| abstract_inverted_index.(VIADRL) | 21 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Decision | 73 |
| abstract_inverted_index.accuracy | 27 |
| abstract_inverted_index.approach | 112 |
| abstract_inverted_index.compared | 162 |
| abstract_inverted_index.dynamics | 110 |
| abstract_inverted_index.evaluate | 149 |
| abstract_inverted_index.expanded | 43 |
| abstract_inverted_index.learning | 20, 84 |
| abstract_inverted_index.mitigate | 23 |
| abstract_inverted_index.process, | 103 |
| abstract_inverted_index.proposed | 146, 154 |
| abstract_inverted_index.proposes | 3 |
| abstract_inverted_index.relative | 182 |
| abstract_inverted_index.reliance | 24 |
| abstract_inverted_index.resolved | 80 |
| abstract_inverted_index.selected | 169 |
| abstract_inverted_index.strategy | 41, 49, 122, 181, 188, 215 |
| abstract_inverted_index.training | 102 |
| abstract_inverted_index.classical | 37 |
| abstract_inverted_index.dynamics. | 35 |
| abstract_inverted_index.efficient | 90 |
| abstract_inverted_index.executing | 114 |
| abstract_inverted_index.impedance | 5, 47, 54, 61 |
| abstract_inverted_index.learnable | 52 |
| abstract_inverted_index.multibody | 94 |
| abstract_inverted_index.purposes, | 119 |
| abstract_inverted_index.reduction | 205 |
| abstract_inverted_index.strategy. | 156, 221 |
| abstract_inverted_index.training, | 92 |
| abstract_inverted_index.adaptation | 6 |
| abstract_inverted_index.adjustment | 57 |
| abstract_inverted_index.benchmark. | 127 |
| abstract_inverted_index.comparison | 118, 217 |
| abstract_inverted_index.controller | 159, 166 |
| abstract_inverted_index.evaluation | 132 |
| abstract_inverted_index.facilitate | 100 |
| abstract_inverted_index.formalized | 64 |
| abstract_inverted_index.innovative | 107 |
| abstract_inverted_index.introduced | 124 |
| abstract_inverted_index.lower-limb | 9 |
| abstract_inverted_index.parameters | 62 |
| abstract_inverted_index.prototype. | 202 |
| abstract_inverted_index.simulation | 95, 111, 195 |
| abstract_inverted_index.algorithms. | 85 |
| abstract_inverted_index.effectively | 79 |
| abstract_inverted_index.environment | 96 |
| abstract_inverted_index.established | 98 |
| abstract_inverted_index.exoskeleton | 10 |
| abstract_inverted_index.interaction | 33 |
| abstract_inverted_index.parameters. | 55 |
| abstract_inverted_index.performance | 13, 131, 151 |
| abstract_inverted_index.sensitivity | 38 |
| abstract_inverted_index.simulation. | 116 |
| abstract_inverted_index.superiority | 211 |
| abstract_inverted_index.augmentation | 14 |
| abstract_inverted_index.demonstrates | 209 |
| abstract_inverted_index.supplemented | 104 |
| abstract_inverted_index.amplification | 39 |
| abstract_inverted_index.approximately | 197 |
| abstract_inverted_index.ever-changing | 31 |
| abstract_inverted_index.reinforcement | 19, 83 |
| abstract_inverted_index.quantitatively | 148 |
| abstract_inverted_index.systematically | 161 |
| abstract_inverted_index.inverse-forward | 109 |
| abstract_inverted_index.human-exoskeleton | 32 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.50280275 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |