Vision-Based Approach for Food Weight Estimation from 2D Images Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.16478
In response to the increasing demand for efficient and non-invasive methods to estimate food weight, this paper presents a vision-based approach utilizing 2D images. The study employs a dataset of 2380 images comprising fourteen different food types in various portions, orientations, and containers. The proposed methodology integrates deep learning and computer vision techniques, specifically employing Faster R-CNN for food detection and MobileNetV3 for weight estimation. The detection model achieved a mean average precision (mAP) of 83.41\%, an average Intersection over Union (IoU) of 91.82\%, and a classification accuracy of 100\%. For weight estimation, the model demonstrated a root mean squared error (RMSE) of 6.3204, a mean absolute percentage error (MAPE) of 0.0640\%, and an R-squared value of 98.65\%. The study underscores the potential applications of this technology in healthcare for nutrition counseling, fitness and wellness for dietary intake assessment, and smart food storage solutions to reduce waste. The results indicate that the combination of Faster R-CNN and MobileNetV3 provides a robust framework for accurate food weight estimation from 2D images, showcasing the synergy of computer vision and deep learning in practical applications.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.16478
- https://arxiv.org/pdf/2405.16478
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399115674
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399115674Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.16478Digital Object Identifier
- Title
-
Vision-Based Approach for Food Weight Estimation from 2D ImagesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-26Full publication date if available
- Authors
-
Chathura Wimalasiri, Prasan Kumar SahooList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.16478Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.16478Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.16478Direct OA link when available
- Concepts
-
Estimation, Artificial intelligence, Computer science, Computer vision, Pattern recognition (psychology), Economics, ManagementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399115674 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.16478 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.16478 |
| ids.openalex | https://openalex.org/W4399115674 |
| fwci | |
| type | preprint |
| title | Vision-Based Approach for Food Weight Estimation from 2D Images |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10866 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9621999859809875 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2739 |
| topics[0].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[0].display_name | Nutritional Studies and Diet |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C96250715 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6201378107070923 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[0].display_name | Estimation |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5305286645889282 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4431626498699188 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.43999290466308594 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.3484227657318115 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C162324750 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2436002790927887 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[5].display_name | Economics |
| concepts[6].id | https://openalex.org/C187736073 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[6].display_name | Management |
| keywords[0].id | https://openalex.org/keywords/estimation |
| keywords[0].score | 0.6201378107070923 |
| keywords[0].display_name | Estimation |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5305286645889282 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4431626498699188 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.43999290466308594 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.3484227657318115 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/economics |
| keywords[5].score | 0.2436002790927887 |
| keywords[5].display_name | Economics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.16478 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.16478 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.16478 |
| locations[1].id | doi:10.48550/arxiv.2405.16478 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.16478 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5098921439 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Chathura Wimalasiri |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wimalasiri, Chathura |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5043838453 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3496-1195 |
| authorships[1].author.display_name | Prasan Kumar Sahoo |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Sahoo, Prasan Kumar |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.16478 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Vision-Based Approach for Food Weight Estimation from 2D Images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10866 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9621999859809875 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2739 |
| primary_topic.subfield.display_name | Public Health, Environmental and Occupational Health |
| primary_topic.display_name | Nutritional Studies and Diet |
| related_works | https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2772917594, https://openalex.org/W2775347418, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.16478 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.16478 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.16478 |
| primary_location.id | pmh:oai:arXiv.org:2405.16478 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.16478 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.16478 |
| publication_date | 2024-05-26 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 18, 27, 69, 85, 96, 104, 159 |
| abstract_inverted_index.2D | 22, 168 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.an | 76, 113 |
| abstract_inverted_index.in | 37, 127, 179 |
| abstract_inverted_index.of | 29, 74, 82, 88, 102, 110, 116, 124, 153, 173 |
| abstract_inverted_index.to | 2, 11, 144 |
| abstract_inverted_index.For | 90 |
| abstract_inverted_index.The | 24, 43, 65, 118, 147 |
| abstract_inverted_index.and | 8, 41, 49, 60, 84, 112, 133, 139, 156, 176 |
| abstract_inverted_index.for | 6, 57, 62, 129, 135, 162 |
| abstract_inverted_index.the | 3, 93, 121, 151, 171 |
| abstract_inverted_index.2380 | 30 |
| abstract_inverted_index.deep | 47, 177 |
| abstract_inverted_index.food | 13, 35, 58, 141, 164 |
| abstract_inverted_index.from | 167 |
| abstract_inverted_index.mean | 70, 98, 105 |
| abstract_inverted_index.over | 79 |
| abstract_inverted_index.root | 97 |
| abstract_inverted_index.that | 150 |
| abstract_inverted_index.this | 15, 125 |
| abstract_inverted_index.(IoU) | 81 |
| abstract_inverted_index.(mAP) | 73 |
| abstract_inverted_index.R-CNN | 56, 155 |
| abstract_inverted_index.Union | 80 |
| abstract_inverted_index.error | 100, 108 |
| abstract_inverted_index.model | 67, 94 |
| abstract_inverted_index.paper | 16 |
| abstract_inverted_index.smart | 140 |
| abstract_inverted_index.study | 25, 119 |
| abstract_inverted_index.types | 36 |
| abstract_inverted_index.value | 115 |
| abstract_inverted_index.(MAPE) | 109 |
| abstract_inverted_index.(RMSE) | 101 |
| abstract_inverted_index.100\%. | 89 |
| abstract_inverted_index.Faster | 55, 154 |
| abstract_inverted_index.demand | 5 |
| abstract_inverted_index.images | 31 |
| abstract_inverted_index.intake | 137 |
| abstract_inverted_index.reduce | 145 |
| abstract_inverted_index.robust | 160 |
| abstract_inverted_index.vision | 51, 175 |
| abstract_inverted_index.waste. | 146 |
| abstract_inverted_index.weight | 63, 91, 165 |
| abstract_inverted_index.6.3204, | 103 |
| abstract_inverted_index.average | 71, 77 |
| abstract_inverted_index.dataset | 28 |
| abstract_inverted_index.dietary | 136 |
| abstract_inverted_index.employs | 26 |
| abstract_inverted_index.fitness | 132 |
| abstract_inverted_index.images, | 169 |
| abstract_inverted_index.images. | 23 |
| abstract_inverted_index.methods | 10 |
| abstract_inverted_index.results | 148 |
| abstract_inverted_index.squared | 99 |
| abstract_inverted_index.storage | 142 |
| abstract_inverted_index.synergy | 172 |
| abstract_inverted_index.various | 38 |
| abstract_inverted_index.weight, | 14 |
| abstract_inverted_index.83.41\%, | 75 |
| abstract_inverted_index.91.82\%, | 83 |
| abstract_inverted_index.98.65\%. | 117 |
| abstract_inverted_index.absolute | 106 |
| abstract_inverted_index.accuracy | 87 |
| abstract_inverted_index.accurate | 163 |
| abstract_inverted_index.achieved | 68 |
| abstract_inverted_index.approach | 20 |
| abstract_inverted_index.computer | 50, 174 |
| abstract_inverted_index.estimate | 12 |
| abstract_inverted_index.fourteen | 33 |
| abstract_inverted_index.indicate | 149 |
| abstract_inverted_index.learning | 48, 178 |
| abstract_inverted_index.presents | 17 |
| abstract_inverted_index.proposed | 44 |
| abstract_inverted_index.provides | 158 |
| abstract_inverted_index.response | 1 |
| abstract_inverted_index.wellness | 134 |
| abstract_inverted_index.0.0640\%, | 111 |
| abstract_inverted_index.R-squared | 114 |
| abstract_inverted_index.detection | 59, 66 |
| abstract_inverted_index.different | 34 |
| abstract_inverted_index.efficient | 7 |
| abstract_inverted_index.employing | 54 |
| abstract_inverted_index.framework | 161 |
| abstract_inverted_index.nutrition | 130 |
| abstract_inverted_index.portions, | 39 |
| abstract_inverted_index.potential | 122 |
| abstract_inverted_index.practical | 180 |
| abstract_inverted_index.precision | 72 |
| abstract_inverted_index.solutions | 143 |
| abstract_inverted_index.utilizing | 21 |
| abstract_inverted_index.comprising | 32 |
| abstract_inverted_index.estimation | 166 |
| abstract_inverted_index.healthcare | 128 |
| abstract_inverted_index.increasing | 4 |
| abstract_inverted_index.integrates | 46 |
| abstract_inverted_index.percentage | 107 |
| abstract_inverted_index.showcasing | 170 |
| abstract_inverted_index.technology | 126 |
| abstract_inverted_index.MobileNetV3 | 61, 157 |
| abstract_inverted_index.assessment, | 138 |
| abstract_inverted_index.combination | 152 |
| abstract_inverted_index.containers. | 42 |
| abstract_inverted_index.counseling, | 131 |
| abstract_inverted_index.estimation, | 92 |
| abstract_inverted_index.estimation. | 64 |
| abstract_inverted_index.methodology | 45 |
| abstract_inverted_index.techniques, | 52 |
| abstract_inverted_index.underscores | 120 |
| abstract_inverted_index.Intersection | 78 |
| abstract_inverted_index.applications | 123 |
| abstract_inverted_index.demonstrated | 95 |
| abstract_inverted_index.non-invasive | 9 |
| abstract_inverted_index.specifically | 53 |
| abstract_inverted_index.vision-based | 19 |
| abstract_inverted_index.applications. | 181 |
| abstract_inverted_index.orientations, | 40 |
| abstract_inverted_index.classification | 86 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |