Vision-Driven 2D Supervised Fine-Tuning Framework for Bird's Eye View Perception Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.05834
Visual bird's eye view (BEV) perception, due to its excellent perceptual capabilities, is progressively replacing costly LiDAR-based perception systems, especially in the realm of urban intelligent driving. However, this type of perception still relies on LiDAR data to construct ground truth databases, a process that is both cumbersome and time-consuming. Moreover, most massproduced autonomous driving systems are only equipped with surround camera sensors and lack LiDAR data for precise annotation. To tackle this challenge, we propose a fine-tuning method for BEV perception network based on visual 2D semantic perception, aimed at enhancing the model's generalization capabilities in new scene data. Considering the maturity and development of 2D perception technologies, our method significantly reduces the dependency on high-cost BEV ground truths and shows promising industrial application prospects. Extensive experiments and comparative analyses conducted on the nuScenes and Waymo public datasets demonstrate the effectiveness of our proposed method.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.05834
- https://arxiv.org/pdf/2409.05834
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403619061
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403619061Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.05834Digital Object Identifier
- Title
-
Vision-Driven 2D Supervised Fine-Tuning Framework for Bird's Eye View PerceptionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-09Full publication date if available
- Authors
-
Lei He, Qiaoyi Wang, Honglin Sun, Qing Xu, Bolin Gao, Songnian Li, Jianqiang Wang, Keqiang LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.05834Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.05834Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.05834Direct OA link when available
- Concepts
-
Perception, Computer vision, Artificial intelligence, Computer science, Optometry, Cognitive psychology, Psychology, Neuroscience, MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403619061 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.05834 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.05834 |
| ids.openalex | https://openalex.org/W4403619061 |
| fwci | |
| type | preprint |
| title | Vision-Driven 2D Supervised Fine-Tuning Framework for Bird's Eye View Perception |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12389 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9531999826431274 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Infrared Target Detection Methodologies |
| topics[1].id | https://openalex.org/T14257 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9524000287055969 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Measurement and Detection Methods |
| topics[2].id | https://openalex.org/T10191 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9477999806404114 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Robotics and Sensor-Based Localization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C26760741 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6834927201271057 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[0].display_name | Perception |
| concepts[1].id | https://openalex.org/C31972630 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5517560243606567 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[1].display_name | Computer vision |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5463784337043762 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4674901068210602 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C119767625 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3740095794200897 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q618211 |
| concepts[4].display_name | Optometry |
| concepts[5].id | https://openalex.org/C180747234 |
| concepts[5].level | 1 |
| concepts[5].score | 0.36176347732543945 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[5].display_name | Cognitive psychology |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3460872769355774 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C169760540 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0953126847743988 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[7].display_name | Neuroscience |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0827735960483551 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/perception |
| keywords[0].score | 0.6834927201271057 |
| keywords[0].display_name | Perception |
| keywords[1].id | https://openalex.org/keywords/computer-vision |
| keywords[1].score | 0.5517560243606567 |
| keywords[1].display_name | Computer vision |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5463784337043762 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4674901068210602 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/optometry |
| keywords[4].score | 0.3740095794200897 |
| keywords[4].display_name | Optometry |
| keywords[5].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[5].score | 0.36176347732543945 |
| keywords[5].display_name | Cognitive psychology |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.3460872769355774 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/neuroscience |
| keywords[7].score | 0.0953126847743988 |
| keywords[7].display_name | Neuroscience |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.0827735960483551 |
| keywords[8].display_name | Medicine |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.05834 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.05834 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.05834 |
| locations[1].id | doi:10.48550/arxiv.2409.05834 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.05834 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5080395684 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0215-3102 |
| authorships[0].author.display_name | Lei He |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | He, Lei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5087475030 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Qiaoyi Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Qiaoyi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5112030828 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Honglin Sun |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sun, Honglin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101624108 |
| authorships[3].author.orcid | https://orcid.org/0009-0004-8782-3057 |
| authorships[3].author.display_name | Qing Xu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xu, Qing |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5044921383 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Bolin Gao |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Gao, Bolin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5047703394 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8244-5681 |
| authorships[5].author.display_name | Songnian Li |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Li, Shengbo Eben |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5115596549 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Jianqiang Wang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Wang, Jianqiang |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5031855986 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9333-7416 |
| authorships[7].author.display_name | Keqiang Li |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Li, Keqiang |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.05834 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Vision-Driven 2D Supervised Fine-Tuning Framework for Bird's Eye View Perception |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12389 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9531999826431274 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Infrared Target Detection Methodologies |
| related_works | https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.05834 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.05834 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.05834 |
| primary_location.id | pmh:oai:arXiv.org:2409.05834 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.05834 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.05834 |
| publication_date | 2024-09-09 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 42, 76 |
| abstract_inverted_index.2D | 86, 106 |
| abstract_inverted_index.To | 70 |
| abstract_inverted_index.at | 90 |
| abstract_inverted_index.in | 20, 96 |
| abstract_inverted_index.is | 12, 45 |
| abstract_inverted_index.of | 23, 30, 105, 142 |
| abstract_inverted_index.on | 34, 84, 115, 132 |
| abstract_inverted_index.to | 7, 37 |
| abstract_inverted_index.we | 74 |
| abstract_inverted_index.BEV | 80, 117 |
| abstract_inverted_index.and | 48, 63, 103, 120, 128, 135 |
| abstract_inverted_index.are | 56 |
| abstract_inverted_index.due | 6 |
| abstract_inverted_index.eye | 2 |
| abstract_inverted_index.for | 67, 79 |
| abstract_inverted_index.its | 8 |
| abstract_inverted_index.new | 97 |
| abstract_inverted_index.our | 109, 143 |
| abstract_inverted_index.the | 21, 92, 101, 113, 133, 140 |
| abstract_inverted_index.both | 46 |
| abstract_inverted_index.data | 36, 66 |
| abstract_inverted_index.lack | 64 |
| abstract_inverted_index.most | 51 |
| abstract_inverted_index.only | 57 |
| abstract_inverted_index.that | 44 |
| abstract_inverted_index.this | 28, 72 |
| abstract_inverted_index.type | 29 |
| abstract_inverted_index.view | 3 |
| abstract_inverted_index.with | 59 |
| abstract_inverted_index.(BEV) | 4 |
| abstract_inverted_index.LiDAR | 35, 65 |
| abstract_inverted_index.Waymo | 136 |
| abstract_inverted_index.aimed | 89 |
| abstract_inverted_index.based | 83 |
| abstract_inverted_index.data. | 99 |
| abstract_inverted_index.realm | 22 |
| abstract_inverted_index.scene | 98 |
| abstract_inverted_index.shows | 121 |
| abstract_inverted_index.still | 32 |
| abstract_inverted_index.truth | 40 |
| abstract_inverted_index.urban | 24 |
| abstract_inverted_index.Visual | 0 |
| abstract_inverted_index.bird's | 1 |
| abstract_inverted_index.camera | 61 |
| abstract_inverted_index.costly | 15 |
| abstract_inverted_index.ground | 39, 118 |
| abstract_inverted_index.method | 78, 110 |
| abstract_inverted_index.public | 137 |
| abstract_inverted_index.relies | 33 |
| abstract_inverted_index.tackle | 71 |
| abstract_inverted_index.truths | 119 |
| abstract_inverted_index.visual | 85 |
| abstract_inverted_index.driving | 54 |
| abstract_inverted_index.method. | 145 |
| abstract_inverted_index.model's | 93 |
| abstract_inverted_index.network | 82 |
| abstract_inverted_index.precise | 68 |
| abstract_inverted_index.process | 43 |
| abstract_inverted_index.propose | 75 |
| abstract_inverted_index.reduces | 112 |
| abstract_inverted_index.sensors | 62 |
| abstract_inverted_index.systems | 55 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.analyses | 130 |
| abstract_inverted_index.datasets | 138 |
| abstract_inverted_index.driving. | 26 |
| abstract_inverted_index.equipped | 58 |
| abstract_inverted_index.maturity | 102 |
| abstract_inverted_index.nuScenes | 134 |
| abstract_inverted_index.proposed | 144 |
| abstract_inverted_index.semantic | 87 |
| abstract_inverted_index.surround | 60 |
| abstract_inverted_index.systems, | 18 |
| abstract_inverted_index.Extensive | 126 |
| abstract_inverted_index.Moreover, | 50 |
| abstract_inverted_index.conducted | 131 |
| abstract_inverted_index.construct | 38 |
| abstract_inverted_index.enhancing | 91 |
| abstract_inverted_index.excellent | 9 |
| abstract_inverted_index.high-cost | 116 |
| abstract_inverted_index.promising | 122 |
| abstract_inverted_index.replacing | 14 |
| abstract_inverted_index.autonomous | 53 |
| abstract_inverted_index.challenge, | 73 |
| abstract_inverted_index.cumbersome | 47 |
| abstract_inverted_index.databases, | 41 |
| abstract_inverted_index.dependency | 114 |
| abstract_inverted_index.especially | 19 |
| abstract_inverted_index.industrial | 123 |
| abstract_inverted_index.perception | 17, 31, 81, 107 |
| abstract_inverted_index.perceptual | 10 |
| abstract_inverted_index.prospects. | 125 |
| abstract_inverted_index.Considering | 100 |
| abstract_inverted_index.LiDAR-based | 16 |
| abstract_inverted_index.annotation. | 69 |
| abstract_inverted_index.application | 124 |
| abstract_inverted_index.comparative | 129 |
| abstract_inverted_index.demonstrate | 139 |
| abstract_inverted_index.development | 104 |
| abstract_inverted_index.experiments | 127 |
| abstract_inverted_index.fine-tuning | 77 |
| abstract_inverted_index.intelligent | 25 |
| abstract_inverted_index.perception, | 5, 88 |
| abstract_inverted_index.capabilities | 95 |
| abstract_inverted_index.massproduced | 52 |
| abstract_inverted_index.capabilities, | 11 |
| abstract_inverted_index.effectiveness | 141 |
| abstract_inverted_index.progressively | 13 |
| abstract_inverted_index.significantly | 111 |
| abstract_inverted_index.technologies, | 108 |
| abstract_inverted_index.generalization | 94 |
| abstract_inverted_index.time-consuming. | 49 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |