Vision Transformer with Convolutions Architecture Search Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2203.10435
Transformers exhibit great advantages in handling computer vision tasks. They model image classification tasks by utilizing a multi-head attention mechanism to process a series of patches consisting of split images. However, for complex tasks, Transformer in computer vision not only requires inheriting a bit of dynamic attention and global context, but also needs to introduce features concerning noise reduction, shifting, and scaling invariance of objects. Therefore, here we take a step forward to study the structural characteristics of Transformer and convolution and propose an architecture search method-Vision Transformer with Convolutions Architecture Search (VTCAS). The high-performance backbone network searched by VTCAS introduces the desirable features of convolutional neural networks into the Transformer architecture while maintaining the benefits of the multi-head attention mechanism. The searched block-based backbone network can extract feature maps at different scales. These features are compatible with a wider range of visual tasks, such as image classification (32 M parameters, 82.0% Top-1 accuracy on ImageNet-1K) and object detection (50.4% mAP on COCO2017). The proposed topology based on the multi-head attention mechanism and CNN adaptively associates relational features of pixels with multi-scale features of objects. It enhances the robustness of the neural network for object recognition, especially in the low illumination indoor scene.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2203.10435
- https://arxiv.org/pdf/2203.10435
- OA Status
- green
- Cited By
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221167449
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221167449Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2203.10435Digital Object Identifier
- Title
-
Vision Transformer with Convolutions Architecture SearchWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-20Full publication date if available
- Authors
-
Haichao Zhang, Kuangrong Hao, Witold Pedrycz, Lei Gao, Xue‐song Tang, Bing WeiList of authors in order
- Landing page
-
https://arxiv.org/abs/2203.10435Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2203.10435Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2203.10435Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Transformer, Convolutional neural network, Robustness (evolution), Computer vision, Architecture, Pixel, Pattern recognition (psychology), Cognitive neuroscience of visual object recognition, Feature extraction, Engineering, Biochemistry, Electrical engineering, Voltage, Visual arts, Gene, Art, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 2, 2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221167449 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2203.10435 |
| ids.doi | https://doi.org/10.48550/arxiv.2203.10435 |
| ids.openalex | https://openalex.org/W4221167449 |
| fwci | |
| type | preprint |
| title | Vision Transformer with Convolutions Architecture Search |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11992 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.996399998664856 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | CCD and CMOS Imaging Sensors |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9955999851226807 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T11605 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9948999881744385 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Visual Attention and Saliency Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7891579866409302 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7004115581512451 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C66322947 |
| concepts[2].level | 3 |
| concepts[2].score | 0.622368574142456 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[2].display_name | Transformer |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5959199666976929 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C63479239 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5578634142875671 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[4].display_name | Robustness (evolution) |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5106170773506165 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C123657996 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5104886293411255 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12271 |
| concepts[6].display_name | Architecture |
| concepts[7].id | https://openalex.org/C160633673 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48334023356437683 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[7].display_name | Pixel |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.47904980182647705 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C64876066 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4362791180610657 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5141226 |
| concepts[9].display_name | Cognitive neuroscience of visual object recognition |
| concepts[10].id | https://openalex.org/C52622490 |
| concepts[10].level | 2 |
| concepts[10].score | 0.367450475692749 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[10].display_name | Feature extraction |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.10195094347000122 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C55493867 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[12].display_name | Biochemistry |
| concepts[13].id | https://openalex.org/C119599485 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[13].display_name | Electrical engineering |
| concepts[14].id | https://openalex.org/C165801399 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[14].display_name | Voltage |
| concepts[15].id | https://openalex.org/C153349607 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[15].display_name | Visual arts |
| concepts[16].id | https://openalex.org/C104317684 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[16].display_name | Gene |
| concepts[17].id | https://openalex.org/C142362112 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[17].display_name | Art |
| concepts[18].id | https://openalex.org/C185592680 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[18].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7891579866409302 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7004115581512451 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/transformer |
| keywords[2].score | 0.622368574142456 |
| keywords[2].display_name | Transformer |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.5959199666976929 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/robustness |
| keywords[4].score | 0.5578634142875671 |
| keywords[4].display_name | Robustness (evolution) |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.5106170773506165 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/architecture |
| keywords[6].score | 0.5104886293411255 |
| keywords[6].display_name | Architecture |
| keywords[7].id | https://openalex.org/keywords/pixel |
| keywords[7].score | 0.48334023356437683 |
| keywords[7].display_name | Pixel |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.47904980182647705 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/cognitive-neuroscience-of-visual-object-recognition |
| keywords[9].score | 0.4362791180610657 |
| keywords[9].display_name | Cognitive neuroscience of visual object recognition |
| keywords[10].id | https://openalex.org/keywords/feature-extraction |
| keywords[10].score | 0.367450475692749 |
| keywords[10].display_name | Feature extraction |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.10195094347000122 |
| keywords[11].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2203.10435 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2203.10435 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2203.10435 |
| locations[1].id | doi:10.48550/arxiv.2203.10435 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2203.10435 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101758340 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4168-3640 |
| authorships[0].author.display_name | Haichao Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Haichao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5001762132 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9672-6161 |
| authorships[1].author.display_name | Kuangrong Hao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hao, Kuangrong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5003799782 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9335-9930 |
| authorships[2].author.display_name | Witold Pedrycz |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pedrycz, Witold |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5002631807 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4272-9417 |
| authorships[3].author.display_name | Lei Gao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gao, Lei |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5048492871 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7594-2241 |
| authorships[4].author.display_name | Xue‐song Tang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tang, Xuesong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5064572247 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2298-1474 |
| authorships[5].author.display_name | Bing Wei |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Wei, Bing |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2203.10435 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Vision Transformer with Convolutions Architecture Search |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11992 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.996399998664856 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | CCD and CMOS Imaging Sensors |
| related_works | https://openalex.org/W4293226380, https://openalex.org/W2085033728, https://openalex.org/W4285411112, https://openalex.org/W2171299904, https://openalex.org/W1647606319, https://openalex.org/W4390494008, https://openalex.org/W2053596378, https://openalex.org/W2922442631, https://openalex.org/W2168523118, https://openalex.org/W2073639911 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2203.10435 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2203.10435 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2203.10435 |
| primary_location.id | pmh:oai:arXiv.org:2203.10435 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2203.10435 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2203.10435 |
| publication_date | 2022-03-20 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.M | 149 |
| abstract_inverted_index.a | 16, 22, 42, 69, 138 |
| abstract_inverted_index.It | 185 |
| abstract_inverted_index.an | 83 |
| abstract_inverted_index.as | 145 |
| abstract_inverted_index.at | 130 |
| abstract_inverted_index.by | 14, 98 |
| abstract_inverted_index.in | 4, 35, 197 |
| abstract_inverted_index.of | 24, 27, 44, 63, 77, 104, 116, 141, 178, 183, 189 |
| abstract_inverted_index.on | 154, 161, 167 |
| abstract_inverted_index.to | 20, 53, 72 |
| abstract_inverted_index.we | 67 |
| abstract_inverted_index.(32 | 148 |
| abstract_inverted_index.CNN | 173 |
| abstract_inverted_index.The | 93, 121, 163 |
| abstract_inverted_index.and | 47, 60, 79, 81, 156, 172 |
| abstract_inverted_index.are | 135 |
| abstract_inverted_index.bit | 43 |
| abstract_inverted_index.but | 50 |
| abstract_inverted_index.can | 126 |
| abstract_inverted_index.for | 31, 193 |
| abstract_inverted_index.low | 199 |
| abstract_inverted_index.mAP | 160 |
| abstract_inverted_index.not | 38 |
| abstract_inverted_index.the | 74, 101, 109, 114, 117, 168, 187, 190, 198 |
| abstract_inverted_index.They | 9 |
| abstract_inverted_index.also | 51 |
| abstract_inverted_index.here | 66 |
| abstract_inverted_index.into | 108 |
| abstract_inverted_index.maps | 129 |
| abstract_inverted_index.only | 39 |
| abstract_inverted_index.step | 70 |
| abstract_inverted_index.such | 144 |
| abstract_inverted_index.take | 68 |
| abstract_inverted_index.with | 88, 137, 180 |
| abstract_inverted_index.82.0% | 151 |
| abstract_inverted_index.These | 133 |
| abstract_inverted_index.Top-1 | 152 |
| abstract_inverted_index.VTCAS | 99 |
| abstract_inverted_index.based | 166 |
| abstract_inverted_index.great | 2 |
| abstract_inverted_index.image | 11, 146 |
| abstract_inverted_index.model | 10 |
| abstract_inverted_index.needs | 52 |
| abstract_inverted_index.noise | 57 |
| abstract_inverted_index.range | 140 |
| abstract_inverted_index.split | 28 |
| abstract_inverted_index.study | 73 |
| abstract_inverted_index.tasks | 13 |
| abstract_inverted_index.while | 112 |
| abstract_inverted_index.wider | 139 |
| abstract_inverted_index.(50.4% | 159 |
| abstract_inverted_index.Search | 91 |
| abstract_inverted_index.global | 48 |
| abstract_inverted_index.indoor | 201 |
| abstract_inverted_index.neural | 106, 191 |
| abstract_inverted_index.object | 157, 194 |
| abstract_inverted_index.pixels | 179 |
| abstract_inverted_index.scene. | 202 |
| abstract_inverted_index.search | 85 |
| abstract_inverted_index.series | 23 |
| abstract_inverted_index.tasks, | 33, 143 |
| abstract_inverted_index.tasks. | 8 |
| abstract_inverted_index.vision | 7, 37 |
| abstract_inverted_index.visual | 142 |
| abstract_inverted_index.complex | 32 |
| abstract_inverted_index.dynamic | 45 |
| abstract_inverted_index.exhibit | 1 |
| abstract_inverted_index.extract | 127 |
| abstract_inverted_index.feature | 128 |
| abstract_inverted_index.forward | 71 |
| abstract_inverted_index.images. | 29 |
| abstract_inverted_index.network | 96, 125, 192 |
| abstract_inverted_index.patches | 25 |
| abstract_inverted_index.process | 21 |
| abstract_inverted_index.propose | 82 |
| abstract_inverted_index.scales. | 132 |
| abstract_inverted_index.scaling | 61 |
| abstract_inverted_index.(VTCAS). | 92 |
| abstract_inverted_index.However, | 30 |
| abstract_inverted_index.accuracy | 153 |
| abstract_inverted_index.backbone | 95, 124 |
| abstract_inverted_index.benefits | 115 |
| abstract_inverted_index.computer | 6, 36 |
| abstract_inverted_index.context, | 49 |
| abstract_inverted_index.enhances | 186 |
| abstract_inverted_index.features | 55, 103, 134, 177, 182 |
| abstract_inverted_index.handling | 5 |
| abstract_inverted_index.networks | 107 |
| abstract_inverted_index.objects. | 64, 184 |
| abstract_inverted_index.proposed | 164 |
| abstract_inverted_index.requires | 40 |
| abstract_inverted_index.searched | 97, 122 |
| abstract_inverted_index.topology | 165 |
| abstract_inverted_index.attention | 18, 46, 119, 170 |
| abstract_inverted_index.desirable | 102 |
| abstract_inverted_index.detection | 158 |
| abstract_inverted_index.different | 131 |
| abstract_inverted_index.introduce | 54 |
| abstract_inverted_index.mechanism | 19, 171 |
| abstract_inverted_index.shifting, | 59 |
| abstract_inverted_index.utilizing | 15 |
| abstract_inverted_index.COCO2017). | 162 |
| abstract_inverted_index.Therefore, | 65 |
| abstract_inverted_index.adaptively | 174 |
| abstract_inverted_index.advantages | 3 |
| abstract_inverted_index.associates | 175 |
| abstract_inverted_index.compatible | 136 |
| abstract_inverted_index.concerning | 56 |
| abstract_inverted_index.consisting | 26 |
| abstract_inverted_index.especially | 196 |
| abstract_inverted_index.inheriting | 41 |
| abstract_inverted_index.introduces | 100 |
| abstract_inverted_index.invariance | 62 |
| abstract_inverted_index.mechanism. | 120 |
| abstract_inverted_index.multi-head | 17, 118, 169 |
| abstract_inverted_index.reduction, | 58 |
| abstract_inverted_index.relational | 176 |
| abstract_inverted_index.robustness | 188 |
| abstract_inverted_index.structural | 75 |
| abstract_inverted_index.Transformer | 34, 78, 87, 110 |
| abstract_inverted_index.block-based | 123 |
| abstract_inverted_index.convolution | 80 |
| abstract_inverted_index.maintaining | 113 |
| abstract_inverted_index.multi-scale | 181 |
| abstract_inverted_index.parameters, | 150 |
| abstract_inverted_index.Architecture | 90 |
| abstract_inverted_index.Convolutions | 89 |
| abstract_inverted_index.ImageNet-1K) | 155 |
| abstract_inverted_index.Transformers | 0 |
| abstract_inverted_index.architecture | 84, 111 |
| abstract_inverted_index.illumination | 200 |
| abstract_inverted_index.recognition, | 195 |
| abstract_inverted_index.convolutional | 105 |
| abstract_inverted_index.method-Vision | 86 |
| abstract_inverted_index.classification | 12, 147 |
| abstract_inverted_index.characteristics | 76 |
| abstract_inverted_index.high-performance | 94 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile |