VISTA Uncovers Missing Gene Expression and Spatial-induced Information for Spatial Transcriptomic Data Analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-7564369/v1
Characterizing cell activities within a spatially resolved context is essential to enhance our understanding of spatially-induced cellular states and features. While single-cell RNA-seq (scRNA-seq) offers comprehensive profiling of cells within a tissue, it fails to capture spatial context. Conversely, subcellular spatial transcriptomics (SST) technologies provide high-resolution spatial profiles of gene expression, yet their utility is constrained by the limited number of genes they can simultaneously profile. To address this limitation, we introduce VISTA, a novel approach designed to predict the expression levels of unobserved genes specifically tailored for SST data. VISTA jointly models scRNA-seq data and SST data based on variational inference and geometric deep learning, and incorporates uncertainty quantification. Using four SST datasets, we demonstrate VISTA's superior performance in imputation and in analyzing large-scale SST datasets with satisfactory time efficiency and memory consumption. The imputation of VISTA enables a multitude of downstream applications, including the detection of new spatially variable genes, the discovery of novel ligand-receptor interactions, the inference of spatial RNA velocity, the generation for spatial transcriptomics with in-silico perturbation, and an improved decomposition of spatial and intrinsic variations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-7564369/v1
- https://www.researchsquare.com/article/rs-7564369/latest.pdf
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4414881663
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414881663Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-7564369/v1Digital Object Identifier
- Title
-
VISTA Uncovers Missing Gene Expression and Spatial-induced Information for Spatial Transcriptomic Data AnalysisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-07Full publication date if available
- Authors
-
Hongyu Zhao, Tianyu Liu, Xiao Luo, Yingxin Lin, Yizhou SunList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-7564369/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-7564369/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-7564369/latest.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414881663 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-7564369/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-7564369/v1 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41282090 |
| ids.openalex | https://openalex.org/W4414881663 |
| fwci | 0.0 |
| type | preprint |
| title | VISTA Uncovers Missing Gene Expression and Spatial-induced Information for Spatial Transcriptomic Data Analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11289 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9139999747276306 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Single-cell and spatial transcriptomics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-7564369/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-7564369/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-7564369/v1 |
| locations[1].id | pmid:41282090 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Research square |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41282090 |
| locations[2].id | pmh:oai:europepmc.org:11440146 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400806 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Europe PMC (PubMed Central) |
| locations[2].source.host_organization | https://openalex.org/I1303153112 |
| locations[2].source.host_organization_name | European Bioinformatics Institute |
| locations[2].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12632580 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5074828414 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1195-9607 |
| authorships[0].author.display_name | Hongyu Zhao |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[0].affiliations[0].raw_affiliation_string | Yale University |
| authorships[0].institutions[0].id | https://openalex.org/I32971472 |
| authorships[0].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Yale University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hongyu Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Yale University |
| authorships[1].author.id | https://openalex.org/A5017004315 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9412-6573 |
| authorships[1].author.display_name | Tianyu Liu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[1].affiliations[0].raw_affiliation_string | Yale University |
| authorships[1].institutions[0].id | https://openalex.org/I32971472 |
| authorships[1].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Yale University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tianyu Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Yale University |
| authorships[2].author.id | https://openalex.org/A5100426938 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7987-3714 |
| authorships[2].author.display_name | Xiao Luo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiao Luo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5033771420 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4299-7326 |
| authorships[3].author.display_name | Yingxin Lin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yingxin Lin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5025213473 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1812-6843 |
| authorships[4].author.display_name | Yizhou Sun |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yizhou Sun |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-7564369/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | VISTA Uncovers Missing Gene Expression and Spatial-induced Information for Spatial Transcriptomic Data Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11289 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9139999747276306 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Single-cell and spatial transcriptomics |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.21203/rs.3.rs-7564369/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-7564369/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7564369/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-7564369/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-7564369/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7564369/v1 |
| publication_date | 2025-10-07 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 31, 74, 140 |
| abstract_inverted_index.To | 67 |
| abstract_inverted_index.an | 174 |
| abstract_inverted_index.by | 57 |
| abstract_inverted_index.in | 120, 123 |
| abstract_inverted_index.is | 9, 55 |
| abstract_inverted_index.it | 33 |
| abstract_inverted_index.of | 15, 28, 49, 61, 83, 137, 142, 148, 155, 161, 177 |
| abstract_inverted_index.on | 100 |
| abstract_inverted_index.to | 11, 35, 78 |
| abstract_inverted_index.we | 71, 115 |
| abstract_inverted_index.RNA | 163 |
| abstract_inverted_index.SST | 89, 97, 113, 126 |
| abstract_inverted_index.The | 135 |
| abstract_inverted_index.and | 19, 96, 103, 107, 122, 132, 173, 179 |
| abstract_inverted_index.can | 64 |
| abstract_inverted_index.for | 88, 167 |
| abstract_inverted_index.new | 149 |
| abstract_inverted_index.our | 13 |
| abstract_inverted_index.the | 58, 80, 146, 153, 159, 165 |
| abstract_inverted_index.yet | 52 |
| abstract_inverted_index.cell | 2 |
| abstract_inverted_index.data | 95, 98 |
| abstract_inverted_index.deep | 105 |
| abstract_inverted_index.four | 112 |
| abstract_inverted_index.gene | 50 |
| abstract_inverted_index.they | 63 |
| abstract_inverted_index.this | 69 |
| abstract_inverted_index.time | 130 |
| abstract_inverted_index.with | 128, 170 |
| abstract_inverted_index.(SST) | 43 |
| abstract_inverted_index.Using | 111 |
| abstract_inverted_index.VISTA | 91, 138 |
| abstract_inverted_index.While | 21 |
| abstract_inverted_index.based | 99 |
| abstract_inverted_index.cells | 29 |
| abstract_inverted_index.data. | 90 |
| abstract_inverted_index.fails | 34 |
| abstract_inverted_index.genes | 62, 85 |
| abstract_inverted_index.novel | 75, 156 |
| abstract_inverted_index.their | 53 |
| abstract_inverted_index.VISTA, | 73 |
| abstract_inverted_index.genes, | 152 |
| abstract_inverted_index.levels | 82 |
| abstract_inverted_index.memory | 133 |
| abstract_inverted_index.models | 93 |
| abstract_inverted_index.number | 60 |
| abstract_inverted_index.offers | 25 |
| abstract_inverted_index.states | 18 |
| abstract_inverted_index.within | 4, 30 |
| abstract_inverted_index.RNA-seq | 23 |
| abstract_inverted_index.VISTA's | 117 |
| abstract_inverted_index.address | 68 |
| abstract_inverted_index.capture | 36 |
| abstract_inverted_index.context | 8 |
| abstract_inverted_index.enables | 139 |
| abstract_inverted_index.enhance | 12 |
| abstract_inverted_index.jointly | 92 |
| abstract_inverted_index.limited | 59 |
| abstract_inverted_index.predict | 79 |
| abstract_inverted_index.provide | 45 |
| abstract_inverted_index.spatial | 37, 41, 47, 162, 168, 178 |
| abstract_inverted_index.tissue, | 32 |
| abstract_inverted_index.utility | 54 |
| abstract_inverted_index.approach | 76 |
| abstract_inverted_index.cellular | 17 |
| abstract_inverted_index.context. | 38 |
| abstract_inverted_index.datasets | 127 |
| abstract_inverted_index.designed | 77 |
| abstract_inverted_index.improved | 175 |
| abstract_inverted_index.profile. | 66 |
| abstract_inverted_index.profiles | 48 |
| abstract_inverted_index.resolved | 7 |
| abstract_inverted_index.superior | 118 |
| abstract_inverted_index.tailored | 87 |
| abstract_inverted_index.variable | 151 |
| abstract_inverted_index.analyzing | 124 |
| abstract_inverted_index.datasets, | 114 |
| abstract_inverted_index.detection | 147 |
| abstract_inverted_index.discovery | 154 |
| abstract_inverted_index.essential | 10 |
| abstract_inverted_index.features. | 20 |
| abstract_inverted_index.geometric | 104 |
| abstract_inverted_index.in-silico | 171 |
| abstract_inverted_index.including | 145 |
| abstract_inverted_index.inference | 102, 160 |
| abstract_inverted_index.intrinsic | 180 |
| abstract_inverted_index.introduce | 72 |
| abstract_inverted_index.learning, | 106 |
| abstract_inverted_index.multitude | 141 |
| abstract_inverted_index.profiling | 27 |
| abstract_inverted_index.scRNA-seq | 94 |
| abstract_inverted_index.spatially | 6, 150 |
| abstract_inverted_index.velocity, | 164 |
| abstract_inverted_index.activities | 3 |
| abstract_inverted_index.downstream | 143 |
| abstract_inverted_index.efficiency | 131 |
| abstract_inverted_index.expression | 81 |
| abstract_inverted_index.generation | 166 |
| abstract_inverted_index.imputation | 121, 136 |
| abstract_inverted_index.unobserved | 84 |
| abstract_inverted_index.(scRNA-seq) | 24 |
| abstract_inverted_index.Conversely, | 39 |
| abstract_inverted_index.constrained | 56 |
| abstract_inverted_index.demonstrate | 116 |
| abstract_inverted_index.expression, | 51 |
| abstract_inverted_index.large-scale | 125 |
| abstract_inverted_index.limitation, | 70 |
| abstract_inverted_index.performance | 119 |
| abstract_inverted_index.single-cell | 22 |
| abstract_inverted_index.subcellular | 40 |
| abstract_inverted_index.uncertainty | 109 |
| abstract_inverted_index.variational | 101 |
| abstract_inverted_index.variations. | 181 |
| abstract_inverted_index.consumption. | 134 |
| abstract_inverted_index.incorporates | 108 |
| abstract_inverted_index.satisfactory | 129 |
| abstract_inverted_index.specifically | 86 |
| abstract_inverted_index.technologies | 44 |
| abstract_inverted_index.applications, | 144 |
| abstract_inverted_index.comprehensive | 26 |
| abstract_inverted_index.decomposition | 176 |
| abstract_inverted_index.interactions, | 158 |
| abstract_inverted_index.perturbation, | 172 |
| abstract_inverted_index.understanding | 14 |
| abstract_inverted_index.Characterizing | 1 |
| abstract_inverted_index.simultaneously | 65 |
| abstract_inverted_index.high-resolution | 46 |
| abstract_inverted_index.ligand-receptor | 157 |
| abstract_inverted_index.quantification. | 110 |
| abstract_inverted_index.transcriptomics | 42, 169 |
| abstract_inverted_index.spatially-induced | 16 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.44146319 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |