ViSTR-GP: Online Cyberattack Detection via Vision-to-State Tensor Regression and Gaussian Processes in Automated Robotic Operations Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.10948
Industrial robotic systems are central to automating smart manufacturing operations. Connected and automated factories face growing cybersecurity risks that can potentially cause interruptions and damages to physical operations. Among these attacks, data-integrity attacks often involve sophisticated exploitation of vulnerabilities that enable an attacker to access and manipulate the operational data and are hence difficult to detect with only existing intrusion detection or model-based detection. This paper addresses the challenges in utilizing existing side-channels to detect data-integrity attacks in robotic manufacturing processes by developing an online detection framework, ViSTR-GP, that cross-checks encoder-reported measurements against a vision-based estimate from an overhead camera outside the controller's authority. In this framework, a one-time interactive segmentation initializes SAM-Track to generate per-frame masks. A low-rank tensor-regression surrogate maps each mask to measurements, while a matrix-variate Gaussian process models nominal residuals, capturing temporal structure and cross-joint correlations. A frame-wise test statistic derived from the predictive distribution provides an online detector with interpretable thresholds. We validate the framework on a real-world robotic testbed with synchronized video frame and encoder data, collecting multiple nominal cycles and constructing replay attack scenarios with graded end-effector deviations. Results on the testbed indicate that the proposed framework recovers joint angles accurately and detects data-integrity attacks earlier with more frequent alarms than all baselines. These improvements are most evident in the most subtle attacks. These results show that plants can detect data-integrity attacks by adding an independent physical channel, bypassing the controller's authority, without needing complex instrumentation.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.10948
- https://arxiv.org/pdf/2509.10948
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415087511
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415087511Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.10948Digital Object Identifier
- Title
-
ViSTR-GP: Online Cyberattack Detection via Vision-to-State Tensor Regression and Gaussian Processes in Automated Robotic OperationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-13Full publication date if available
- Authors
-
Navid Aftabi, Philip Samaha, Jin Ma, Cheng Long, Ramy Harik, Dan LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.10948Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.10948Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.10948Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415087511 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.10948 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.10948 |
| ids.openalex | https://openalex.org/W4415087511 |
| fwci | |
| type | preprint |
| title | ViSTR-GP: Online Cyberattack Detection via Vision-to-State Tensor Regression and Gaussian Processes in Automated Robotic Operations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9404000043869019 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T11241 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9179999828338623 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Advanced Malware Detection Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.10948 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.10948 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.10948 |
| locations[1].id | doi:10.48550/arxiv.2509.10948 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.10948 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5026762085 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2063-1622 |
| authorships[0].author.display_name | Navid Aftabi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Aftabi, Navid |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5093826523 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Philip Samaha |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Samaha, Philip |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100663182 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4089-6898 |
| authorships[2].author.display_name | Jin Ma |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ma, Jin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5044528555 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6806-8405 |
| authorships[3].author.display_name | Cheng Long |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Cheng, Long |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5002970133 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1452-9653 |
| authorships[4].author.display_name | Ramy Harik |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Harik, Ramy |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100380657 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6016-454X |
| authorships[5].author.display_name | Dan Li |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Li, Dan |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.10948 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-12T00:00:00 |
| display_name | ViSTR-GP: Online Cyberattack Detection via Vision-to-State Tensor Regression and Gaussian Processes in Automated Robotic Operations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9404000043869019 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.10948 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.10948 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.10948 |
| primary_location.id | pmh:oai:arXiv.org:2509.10948 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.10948 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.10948 |
| publication_date | 2025-09-13 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 117, 140 |
| abstract_inverted_index.a | 93, 107, 127, 161 |
| abstract_inverted_index.In | 104 |
| abstract_inverted_index.We | 156 |
| abstract_inverted_index.an | 41, 83, 97, 150, 231 |
| abstract_inverted_index.by | 81, 229 |
| abstract_inverted_index.in | 69, 77, 215 |
| abstract_inverted_index.of | 37 |
| abstract_inverted_index.on | 160, 186 |
| abstract_inverted_index.or | 61 |
| abstract_inverted_index.to | 5, 25, 43, 54, 73, 113, 124 |
| abstract_inverted_index.all | 208 |
| abstract_inverted_index.and | 11, 23, 45, 50, 137, 169, 176, 198 |
| abstract_inverted_index.are | 3, 51, 212 |
| abstract_inverted_index.can | 19, 225 |
| abstract_inverted_index.the | 47, 67, 101, 146, 158, 187, 191, 216, 236 |
| abstract_inverted_index.This | 64 |
| abstract_inverted_index.data | 49 |
| abstract_inverted_index.each | 122 |
| abstract_inverted_index.face | 14 |
| abstract_inverted_index.from | 96, 145 |
| abstract_inverted_index.maps | 121 |
| abstract_inverted_index.mask | 123 |
| abstract_inverted_index.more | 204 |
| abstract_inverted_index.most | 213, 217 |
| abstract_inverted_index.only | 57 |
| abstract_inverted_index.show | 222 |
| abstract_inverted_index.test | 142 |
| abstract_inverted_index.than | 207 |
| abstract_inverted_index.that | 18, 39, 88, 190, 223 |
| abstract_inverted_index.this | 105 |
| abstract_inverted_index.with | 56, 153, 165, 181, 203 |
| abstract_inverted_index.Among | 28 |
| abstract_inverted_index.These | 210, 220 |
| abstract_inverted_index.cause | 21 |
| abstract_inverted_index.data, | 171 |
| abstract_inverted_index.frame | 168 |
| abstract_inverted_index.hence | 52 |
| abstract_inverted_index.joint | 195 |
| abstract_inverted_index.often | 33 |
| abstract_inverted_index.paper | 65 |
| abstract_inverted_index.risks | 17 |
| abstract_inverted_index.smart | 7 |
| abstract_inverted_index.these | 29 |
| abstract_inverted_index.video | 167 |
| abstract_inverted_index.while | 126 |
| abstract_inverted_index.access | 44 |
| abstract_inverted_index.adding | 230 |
| abstract_inverted_index.alarms | 206 |
| abstract_inverted_index.angles | 196 |
| abstract_inverted_index.attack | 179 |
| abstract_inverted_index.camera | 99 |
| abstract_inverted_index.cycles | 175 |
| abstract_inverted_index.detect | 55, 74, 226 |
| abstract_inverted_index.enable | 40 |
| abstract_inverted_index.graded | 182 |
| abstract_inverted_index.masks. | 116 |
| abstract_inverted_index.models | 131 |
| abstract_inverted_index.online | 84, 151 |
| abstract_inverted_index.plants | 224 |
| abstract_inverted_index.replay | 178 |
| abstract_inverted_index.subtle | 218 |
| abstract_inverted_index.Results | 185 |
| abstract_inverted_index.against | 92 |
| abstract_inverted_index.attacks | 32, 76, 201, 228 |
| abstract_inverted_index.central | 4 |
| abstract_inverted_index.complex | 241 |
| abstract_inverted_index.damages | 24 |
| abstract_inverted_index.derived | 144 |
| abstract_inverted_index.detects | 199 |
| abstract_inverted_index.earlier | 202 |
| abstract_inverted_index.encoder | 170 |
| abstract_inverted_index.evident | 214 |
| abstract_inverted_index.growing | 15 |
| abstract_inverted_index.involve | 34 |
| abstract_inverted_index.needing | 240 |
| abstract_inverted_index.nominal | 132, 174 |
| abstract_inverted_index.outside | 100 |
| abstract_inverted_index.process | 130 |
| abstract_inverted_index.results | 221 |
| abstract_inverted_index.robotic | 1, 78, 163 |
| abstract_inverted_index.systems | 2 |
| abstract_inverted_index.testbed | 164, 188 |
| abstract_inverted_index.without | 239 |
| abstract_inverted_index.Gaussian | 129 |
| abstract_inverted_index.attacker | 42 |
| abstract_inverted_index.attacks, | 30 |
| abstract_inverted_index.attacks. | 219 |
| abstract_inverted_index.channel, | 234 |
| abstract_inverted_index.detector | 152 |
| abstract_inverted_index.estimate | 95 |
| abstract_inverted_index.existing | 58, 71 |
| abstract_inverted_index.frequent | 205 |
| abstract_inverted_index.generate | 114 |
| abstract_inverted_index.indicate | 189 |
| abstract_inverted_index.low-rank | 118 |
| abstract_inverted_index.multiple | 173 |
| abstract_inverted_index.one-time | 108 |
| abstract_inverted_index.overhead | 98 |
| abstract_inverted_index.physical | 26, 233 |
| abstract_inverted_index.proposed | 192 |
| abstract_inverted_index.provides | 149 |
| abstract_inverted_index.recovers | 194 |
| abstract_inverted_index.temporal | 135 |
| abstract_inverted_index.validate | 157 |
| abstract_inverted_index.Connected | 10 |
| abstract_inverted_index.SAM-Track | 112 |
| abstract_inverted_index.ViSTR-GP, | 87 |
| abstract_inverted_index.addresses | 66 |
| abstract_inverted_index.automated | 12 |
| abstract_inverted_index.bypassing | 235 |
| abstract_inverted_index.capturing | 134 |
| abstract_inverted_index.detection | 60, 85 |
| abstract_inverted_index.difficult | 53 |
| abstract_inverted_index.factories | 13 |
| abstract_inverted_index.framework | 159, 193 |
| abstract_inverted_index.intrusion | 59 |
| abstract_inverted_index.per-frame | 115 |
| abstract_inverted_index.processes | 80 |
| abstract_inverted_index.scenarios | 180 |
| abstract_inverted_index.statistic | 143 |
| abstract_inverted_index.structure | 136 |
| abstract_inverted_index.surrogate | 120 |
| abstract_inverted_index.utilizing | 70 |
| abstract_inverted_index.Industrial | 0 |
| abstract_inverted_index.accurately | 197 |
| abstract_inverted_index.authority, | 238 |
| abstract_inverted_index.authority. | 103 |
| abstract_inverted_index.automating | 6 |
| abstract_inverted_index.baselines. | 209 |
| abstract_inverted_index.challenges | 68 |
| abstract_inverted_index.collecting | 172 |
| abstract_inverted_index.detection. | 63 |
| abstract_inverted_index.developing | 82 |
| abstract_inverted_index.frame-wise | 141 |
| abstract_inverted_index.framework, | 86, 106 |
| abstract_inverted_index.manipulate | 46 |
| abstract_inverted_index.predictive | 147 |
| abstract_inverted_index.real-world | 162 |
| abstract_inverted_index.residuals, | 133 |
| abstract_inverted_index.cross-joint | 138 |
| abstract_inverted_index.deviations. | 184 |
| abstract_inverted_index.independent | 232 |
| abstract_inverted_index.initializes | 111 |
| abstract_inverted_index.interactive | 109 |
| abstract_inverted_index.model-based | 62 |
| abstract_inverted_index.operational | 48 |
| abstract_inverted_index.operations. | 9, 27 |
| abstract_inverted_index.potentially | 20 |
| abstract_inverted_index.thresholds. | 155 |
| abstract_inverted_index.constructing | 177 |
| abstract_inverted_index.controller's | 102, 237 |
| abstract_inverted_index.cross-checks | 89 |
| abstract_inverted_index.distribution | 148 |
| abstract_inverted_index.end-effector | 183 |
| abstract_inverted_index.exploitation | 36 |
| abstract_inverted_index.improvements | 211 |
| abstract_inverted_index.measurements | 91 |
| abstract_inverted_index.segmentation | 110 |
| abstract_inverted_index.synchronized | 166 |
| abstract_inverted_index.vision-based | 94 |
| abstract_inverted_index.correlations. | 139 |
| abstract_inverted_index.cybersecurity | 16 |
| abstract_inverted_index.interpretable | 154 |
| abstract_inverted_index.interruptions | 22 |
| abstract_inverted_index.manufacturing | 8, 79 |
| abstract_inverted_index.measurements, | 125 |
| abstract_inverted_index.side-channels | 72 |
| abstract_inverted_index.sophisticated | 35 |
| abstract_inverted_index.data-integrity | 31, 75, 200, 227 |
| abstract_inverted_index.matrix-variate | 128 |
| abstract_inverted_index.vulnerabilities | 38 |
| abstract_inverted_index.encoder-reported | 90 |
| abstract_inverted_index.instrumentation. | 242 |
| abstract_inverted_index.tensor-regression | 119 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |