Visual deep learning with physics constraints for local scour evolution prediction at monopiles Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.joes.2024.04.001
Local scour threatens the safety of marine structures, necessitating precise prediction of scour evolution around these structures. A visually oriented deep learning model, called Disentangled Physics-constrained Prediction (DPP), was proposed in this study to predict scour evolution at monopiles reliably. It integrates scouring physics with advanced video prediction through a two-branch architecture. The Physics-constrained Recurrent Module (PRModule) branch leverages Recurrent Neural Networks (RNNs) for temporal differentiation, ensuring accurate prediction of scouring-related physical information. Meanwhile, the Convolutional Long-Short-Term Memory (ConvLSTM) branch captures spatial and temporal dynamics in scouring videos, focusing on the prediction of residual features. DPP outperformed three baseline models in predicting the scour evolution at monopiles. Across three scouring scenarios, DPP achieved a 14.2% decrease in Root Mean Squared Error, a 14.7% reduction in Mean Absolute Error, and an 8.1% increase in Structural Similarity on average, compared to the most advanced baseline model. The predicted scouring frames are found to agree well with the true frames, demonstrating DPPs potential as a valuable tool to protect marine infrastructures.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.joes.2024.04.001
- OA Status
- diamond
- Cited By
- 4
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394985057
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394985057Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.joes.2024.04.001Digital Object Identifier
- Title
-
Visual deep learning with physics constraints for local scour evolution prediction at monopilesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-21Full publication date if available
- Authors
-
Bingjing Lu, Jingjing Zuo, Mohammad Shahhosseini, Hui Wang, Haichao Liu, Minxi Zhang, Guoliang YuList of authors in order
- Landing page
-
https://doi.org/10.1016/j.joes.2024.04.001Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.joes.2024.04.001Direct OA link when available
- Concepts
-
Convolutional neural network, Residual, Baseline (sea), Recurrent neural network, Deep learning, Artificial intelligence, Mean squared error, Artificial neural network, Computer science, Mathematics, Geology, Algorithm, Statistics, OceanographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394985057 |
|---|---|
| doi | https://doi.org/10.1016/j.joes.2024.04.001 |
| ids.doi | https://doi.org/10.1016/j.joes.2024.04.001 |
| ids.openalex | https://openalex.org/W4394985057 |
| fwci | 3.51826278 |
| type | article |
| title | Visual deep learning with physics constraints for local scour evolution prediction at monopiles |
| biblio.issue | 3 |
| biblio.volume | 10 |
| biblio.last_page | 352 |
| biblio.first_page | 342 |
| topics[0].id | https://openalex.org/T10577 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9958000183105469 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Hydrology and Sediment Transport Processes |
| topics[1].id | https://openalex.org/T11206 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9610999822616577 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Model Reduction and Neural Networks |
| topics[2].id | https://openalex.org/T12022 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9531000256538391 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Hydraulic flow and structures |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6055883169174194 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C155512373 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5619429349899292 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[1].display_name | Residual |
| concepts[2].id | https://openalex.org/C12725497 |
| concepts[2].level | 2 |
| concepts[2].score | 0.551754891872406 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q810247 |
| concepts[2].display_name | Baseline (sea) |
| concepts[3].id | https://openalex.org/C147168706 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5457897782325745 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[3].display_name | Recurrent neural network |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.497670441865921 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4790983498096466 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C139945424 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43260663747787476 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[6].display_name | Mean squared error |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.37114420533180237 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.35817283391952515 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.27338528633117676 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C127313418 |
| concepts[10].level | 0 |
| concepts[10].score | 0.18982523679733276 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[10].display_name | Geology |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.18691876530647278 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.16317400336265564 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C111368507 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[13].display_name | Oceanography |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.6055883169174194 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/residual |
| keywords[1].score | 0.5619429349899292 |
| keywords[1].display_name | Residual |
| keywords[2].id | https://openalex.org/keywords/baseline |
| keywords[2].score | 0.551754891872406 |
| keywords[2].display_name | Baseline (sea) |
| keywords[3].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[3].score | 0.5457897782325745 |
| keywords[3].display_name | Recurrent neural network |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.497670441865921 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4790983498096466 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/mean-squared-error |
| keywords[6].score | 0.43260663747787476 |
| keywords[6].display_name | Mean squared error |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.37114420533180237 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.35817283391952515 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.27338528633117676 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/geology |
| keywords[10].score | 0.18982523679733276 |
| keywords[10].display_name | Geology |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.18691876530647278 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.16317400336265564 |
| keywords[12].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1016/j.joes.2024.04.001 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898412997 |
| locations[0].source.issn | 2096-0522, 2096-675X, 2468-0133 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2096-0522 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Ocean Engineering and Science |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Ocean Engineering and Science |
| locations[0].landing_page_url | https://doi.org/10.1016/j.joes.2024.04.001 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5007569932 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Bingjing Lu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[0].affiliations[0].raw_affiliation_string | KLMIES, MOE, School of Ocean & Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I183067930 |
| authorships[0].affiliations[1].raw_affiliation_string | SKLOE, School of Ocean & Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China |
| authorships[0].institutions[0].id | https://openalex.org/I183067930 |
| authorships[0].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bingjing Lu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | KLMIES, MOE, School of Ocean & Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China, SKLOE, School of Ocean & Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China |
| authorships[1].author.id | https://openalex.org/A5084234115 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6093-2684 |
| authorships[1].author.display_name | Jingjing Zuo |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210120238 |
| authorships[1].affiliations[0].raw_affiliation_string | Power China Zhongnan Engineering Corporation Limited, 16 Xiangzhang East Road, Changsha, 410014, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210120238 |
| authorships[1].institutions[0].ror | https://ror.org/01varr368 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210120238 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | PowerChina (China) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jingjing Zuo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Power China Zhongnan Engineering Corporation Limited, 16 Xiangzhang East Road, Changsha, 410014, China |
| authorships[2].author.id | https://openalex.org/A5017692276 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Mohammad Shahhosseini |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[2].affiliations[0].raw_affiliation_string | KLMIES, MOE, School of Ocean & Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I183067930 |
| authorships[2].affiliations[1].raw_affiliation_string | SKLOE, School of Ocean & Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China |
| authorships[2].institutions[0].id | https://openalex.org/I183067930 |
| authorships[2].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mohammad Shahhosseini |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | KLMIES, MOE, School of Ocean & Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China, SKLOE, School of Ocean & Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China |
| authorships[3].author.id | https://openalex.org/A5100460694 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7955-7239 |
| authorships[3].author.display_name | Hui Wang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210120238 |
| authorships[3].affiliations[0].raw_affiliation_string | Power China Zhongnan Engineering Corporation Limited, 16 Xiangzhang East Road, Changsha, 410014, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210120238 |
| authorships[3].institutions[0].ror | https://ror.org/01varr368 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210120238 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | PowerChina (China) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hui Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Power China Zhongnan Engineering Corporation Limited, 16 Xiangzhang East Road, Changsha, 410014, China |
| authorships[4].author.id | https://openalex.org/A5100782473 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9175-3371 |
| authorships[4].author.display_name | Haichao Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210120238 |
| authorships[4].affiliations[0].raw_affiliation_string | Power China Zhongnan Engineering Corporation Limited, 16 Xiangzhang East Road, Changsha, 410014, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210120238 |
| authorships[4].institutions[0].ror | https://ror.org/01varr368 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210120238 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | PowerChina (China) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Haichao Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Power China Zhongnan Engineering Corporation Limited, 16 Xiangzhang East Road, Changsha, 410014, China |
| authorships[5].author.id | https://openalex.org/A5091713352 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0671-8569 |
| authorships[5].author.display_name | Minxi Zhang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[5].affiliations[0].raw_affiliation_string | KLMIES, MOE, School of Ocean & Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I183067930 |
| authorships[5].affiliations[1].raw_affiliation_string | SKLOE, School of Ocean & Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China |
| authorships[5].institutions[0].id | https://openalex.org/I183067930 |
| authorships[5].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Minxi Zhang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | KLMIES, MOE, School of Ocean & Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China, SKLOE, School of Ocean & Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China |
| authorships[6].author.id | https://openalex.org/A5070656535 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6845-1508 |
| authorships[6].author.display_name | Guoliang Yu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[6].affiliations[0].raw_affiliation_string | KLMIES, MOE, School of Ocean & Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I183067930 |
| authorships[6].affiliations[1].raw_affiliation_string | SKLOE, School of Ocean & Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China |
| authorships[6].institutions[0].id | https://openalex.org/I183067930 |
| authorships[6].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Guoliang Yu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | KLMIES, MOE, School of Ocean & Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China, SKLOE, School of Ocean & Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.joes.2024.04.001 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Visual deep learning with physics constraints for local scour evolution prediction at monopiles |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10577 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9958000183105469 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Hydrology and Sediment Transport Processes |
| related_works | https://openalex.org/W2383111961, https://openalex.org/W2365952365, https://openalex.org/W2352448290, https://openalex.org/W2380820513, https://openalex.org/W2913146933, https://openalex.org/W2372385138, https://openalex.org/W4296359239, https://openalex.org/W2790400419, https://openalex.org/W2990636717, https://openalex.org/W2964006806 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.joes.2024.04.001 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898412997 |
| best_oa_location.source.issn | 2096-0522, 2096-675X, 2468-0133 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2096-0522 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Ocean Engineering and Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Ocean Engineering and Science |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.joes.2024.04.001 |
| primary_location.id | doi:10.1016/j.joes.2024.04.001 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898412997 |
| primary_location.source.issn | 2096-0522, 2096-675X, 2468-0133 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2096-0522 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Ocean Engineering and Science |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Ocean Engineering and Science |
| primary_location.landing_page_url | https://doi.org/10.1016/j.joes.2024.04.001 |
| publication_date | 2024-04-21 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3003667091, https://openalex.org/W4200033997, https://openalex.org/W2997359437, https://openalex.org/W2600303082, https://openalex.org/W4293072284, https://openalex.org/W3034812373, https://openalex.org/W2884496282, https://openalex.org/W2068577991, https://openalex.org/W2273722458, https://openalex.org/W4307669803, https://openalex.org/W2596835169, https://openalex.org/W4388041317, https://openalex.org/W3153436475, https://openalex.org/W4316019321, https://openalex.org/W6750259706, https://openalex.org/W3093496738, https://openalex.org/W2239232218, https://openalex.org/W6745764291, https://openalex.org/W3040318838, https://openalex.org/W2991970757, https://openalex.org/W2100221835, https://openalex.org/W2556096037, https://openalex.org/W2972546487, https://openalex.org/W4213449917, https://openalex.org/W3010367481, https://openalex.org/W2739024744, https://openalex.org/W3093892353, https://openalex.org/W3110829070, https://openalex.org/W6836685648, https://openalex.org/W2064675550, https://openalex.org/W6680375555, https://openalex.org/W1984351591, https://openalex.org/W2115432870, https://openalex.org/W1606458387, https://openalex.org/W3216706554, https://openalex.org/W6681158678, https://openalex.org/W2899160818, https://openalex.org/W6640617836, https://openalex.org/W2770705252, https://openalex.org/W6658929250, https://openalex.org/W6756064513, https://openalex.org/W6790995079, https://openalex.org/W6748392304, https://openalex.org/W4299296451, https://openalex.org/W4234552385, https://openalex.org/W4251247712 |
| referenced_works_count | 46 |
| abstract_inverted_index.A | 17 |
| abstract_inverted_index.a | 49, 113, 121, 161 |
| abstract_inverted_index.It | 40 |
| abstract_inverted_index.an | 129 |
| abstract_inverted_index.as | 160 |
| abstract_inverted_index.at | 37, 105 |
| abstract_inverted_index.in | 30, 85, 100, 116, 124, 132 |
| abstract_inverted_index.of | 5, 11, 69, 92 |
| abstract_inverted_index.on | 89, 135 |
| abstract_inverted_index.to | 33, 138, 150, 164 |
| abstract_inverted_index.DPP | 95, 111 |
| abstract_inverted_index.The | 52, 144 |
| abstract_inverted_index.and | 82, 128 |
| abstract_inverted_index.are | 148 |
| abstract_inverted_index.for | 63 |
| abstract_inverted_index.the | 3, 74, 90, 102, 139, 154 |
| abstract_inverted_index.was | 28 |
| abstract_inverted_index.8.1% | 130 |
| abstract_inverted_index.DPPs | 158 |
| abstract_inverted_index.Mean | 118, 125 |
| abstract_inverted_index.Root | 117 |
| abstract_inverted_index.deep | 20 |
| abstract_inverted_index.most | 140 |
| abstract_inverted_index.this | 31 |
| abstract_inverted_index.tool | 163 |
| abstract_inverted_index.true | 155 |
| abstract_inverted_index.well | 152 |
| abstract_inverted_index.with | 44, 153 |
| abstract_inverted_index.14.2% | 114 |
| abstract_inverted_index.14.7% | 122 |
| abstract_inverted_index.Local | 0 |
| abstract_inverted_index.agree | 151 |
| abstract_inverted_index.found | 149 |
| abstract_inverted_index.scour | 1, 12, 35, 103 |
| abstract_inverted_index.study | 32 |
| abstract_inverted_index.these | 15 |
| abstract_inverted_index.three | 97, 108 |
| abstract_inverted_index.video | 46 |
| abstract_inverted_index.(DPP), | 27 |
| abstract_inverted_index.(RNNs) | 62 |
| abstract_inverted_index.Across | 107 |
| abstract_inverted_index.Error, | 120, 127 |
| abstract_inverted_index.Memory | 77 |
| abstract_inverted_index.Module | 55 |
| abstract_inverted_index.Neural | 60 |
| abstract_inverted_index.around | 14 |
| abstract_inverted_index.branch | 57, 79 |
| abstract_inverted_index.called | 23 |
| abstract_inverted_index.frames | 147 |
| abstract_inverted_index.marine | 6, 166 |
| abstract_inverted_index.model, | 22 |
| abstract_inverted_index.model. | 143 |
| abstract_inverted_index.models | 99 |
| abstract_inverted_index.safety | 4 |
| abstract_inverted_index.Squared | 119 |
| abstract_inverted_index.frames, | 156 |
| abstract_inverted_index.physics | 43 |
| abstract_inverted_index.precise | 9 |
| abstract_inverted_index.predict | 34 |
| abstract_inverted_index.protect | 165 |
| abstract_inverted_index.spatial | 81 |
| abstract_inverted_index.through | 48 |
| abstract_inverted_index.videos, | 87 |
| abstract_inverted_index.Absolute | 126 |
| abstract_inverted_index.Networks | 61 |
| abstract_inverted_index.accurate | 67 |
| abstract_inverted_index.achieved | 112 |
| abstract_inverted_index.advanced | 45, 141 |
| abstract_inverted_index.average, | 136 |
| abstract_inverted_index.baseline | 98, 142 |
| abstract_inverted_index.captures | 80 |
| abstract_inverted_index.compared | 137 |
| abstract_inverted_index.decrease | 115 |
| abstract_inverted_index.dynamics | 84 |
| abstract_inverted_index.ensuring | 66 |
| abstract_inverted_index.focusing | 88 |
| abstract_inverted_index.increase | 131 |
| abstract_inverted_index.learning | 21 |
| abstract_inverted_index.oriented | 19 |
| abstract_inverted_index.physical | 71 |
| abstract_inverted_index.proposed | 29 |
| abstract_inverted_index.residual | 93 |
| abstract_inverted_index.scouring | 42, 86, 109, 146 |
| abstract_inverted_index.temporal | 64, 83 |
| abstract_inverted_index.valuable | 162 |
| abstract_inverted_index.visually | 18 |
| abstract_inverted_index.Recurrent | 54, 59 |
| abstract_inverted_index.evolution | 13, 36, 104 |
| abstract_inverted_index.features. | 94 |
| abstract_inverted_index.leverages | 58 |
| abstract_inverted_index.monopiles | 38 |
| abstract_inverted_index.potential | 159 |
| abstract_inverted_index.predicted | 145 |
| abstract_inverted_index.reduction | 123 |
| abstract_inverted_index.reliably. | 39 |
| abstract_inverted_index.threatens | 2 |
| abstract_inverted_index.(ConvLSTM) | 78 |
| abstract_inverted_index.(PRModule) | 56 |
| abstract_inverted_index.Meanwhile, | 73 |
| abstract_inverted_index.Prediction | 26 |
| abstract_inverted_index.Similarity | 134 |
| abstract_inverted_index.Structural | 133 |
| abstract_inverted_index.integrates | 41 |
| abstract_inverted_index.monopiles. | 106 |
| abstract_inverted_index.predicting | 101 |
| abstract_inverted_index.prediction | 10, 47, 68, 91 |
| abstract_inverted_index.scenarios, | 110 |
| abstract_inverted_index.two-branch | 50 |
| abstract_inverted_index.structures, | 7 |
| abstract_inverted_index.structures. | 16 |
| abstract_inverted_index.Disentangled | 24 |
| abstract_inverted_index.information. | 72 |
| abstract_inverted_index.outperformed | 96 |
| abstract_inverted_index.Convolutional | 75 |
| abstract_inverted_index.architecture. | 51 |
| abstract_inverted_index.demonstrating | 157 |
| abstract_inverted_index.necessitating | 8 |
| abstract_inverted_index.Long-Short-Term | 76 |
| abstract_inverted_index.differentiation, | 65 |
| abstract_inverted_index.infrastructures. | 167 |
| abstract_inverted_index.scouring-related | 70 |
| abstract_inverted_index.Physics-constrained | 25, 53 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5007569932 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I183067930 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.87350692 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |