Visual-like Template Diffusion: Boosting Single-Sequence Protein Structure Prediction by Adapting Image Diffusion Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-7030897/v1
Single-sequence protein structure prediction has drawn increasing attention due to the high computational costs associated with obtaining homologous information. Here, we propose a visual-like template diffusion method, named TDFold, to achieve accurate and highly efficient single-sequence 3D structure prediction for proteins. Given a protein sequence, TDFold initially generates high-quality inter-residue geometries (distances and orientations) as templates from a probabilistic diffusion perspective. Since inter-residue geometries can be encoded as multi-channel feature matrices (each channel for either the inter-residue distance or orientation correlation), analogous to image features, we construct an image-level template diffusion module by adapting the stable diffusion (SD) model from text-vision generation to sequence-template diffusion for proteins. Subsequently, a lightweight sequence-template co-evolved learning (SCL) network is constructed to facilitate accurate and efficient protein structure prediction. As a result, TDFold possesses three highlights: (i) better single-sequence prediction performance: TDFold greatly outperforms existing protein language models (PLMs), including ESMFold (also known as ESM2), OmegaFold, trRosettaX-Single, and RGN2, on homology-insufficient datasets such as Orphan and Orphan25, while also achieving promising results on the popular CASP14 and CASP15 benchmarks; (ii) low resource consumption: By utilizing the lightweight SCL architecture, the GPU memory consumption of TDFold is generally lower than that of popular methods such as AlphaFold2 and ESMFold; (iii) higher efficiency in training and inference: TDFold can be trained within a week using a single NVIDIA 4090 GPU. Furthermore, the inference time of TDFold is significantly shorter (about 10x to 100x) than that of existing methods (ESMFold and AlphaFold2) for long protein sequences. This work demonstrates the effectiveness of leveraging powerful vision diffusion models to enhance protein template generation, thereby establishing a new paradigm for single-sequence protein structure prediction. It also accelerates protein-related research, particularly for resource-limited universities and academic institutions. The code has been released to speed up biological research.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-7030897/v1
- https://www.researchsquare.com/article/rs-7030897/latest.pdf
- OA Status
- gold
- References
- 7
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412995577
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412995577Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-7030897/v1Digital Object Identifier
- Title
-
Visual-like Template Diffusion: Boosting Single-Sequence Protein Structure Prediction by Adapting Image Diffusion ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-05Full publication date if available
- Authors
-
Zhen Cui, Xudong Wang, Tong Zhang, Xu Guo, Fuyun Wang, Yuanzhi Wang, Xing Cai, Wenming ZhengList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-7030897/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-7030897/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-7030897/latest.pdfDirect OA link when available
- Concepts
-
Boosting (machine learning), Diffusion, Sequence (biology), Computer science, Artificial intelligence, Pattern recognition (psychology), Computer vision, Chemistry, Physics, Biochemistry, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
7Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412995577 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-7030897/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-7030897/v1 |
| ids.openalex | https://openalex.org/W4412995577 |
| fwci | 0.0 |
| type | preprint |
| title | Visual-like Template Diffusion: Boosting Single-Sequence Protein Structure Prediction by Adapting Image Diffusion Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12254 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9782999753952026 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Machine Learning in Bioinformatics |
| topics[1].id | https://openalex.org/T10887 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9675999879837036 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Bioinformatics and Genomic Networks |
| topics[2].id | https://openalex.org/T13937 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.946399986743927 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Genetics, Bioinformatics, and Biomedical Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C46686674 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7307838201522827 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[0].display_name | Boosting (machine learning) |
| concepts[1].id | https://openalex.org/C69357855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6590328216552734 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q163214 |
| concepts[1].display_name | Diffusion |
| concepts[2].id | https://openalex.org/C2778112365 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5815345048904419 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[2].display_name | Sequence (biology) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5596204996109009 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.501105785369873 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.3526690900325775 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3501967489719391 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C185592680 |
| concepts[7].level | 0 |
| concepts[7].score | 0.11883261799812317 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[7].display_name | Chemistry |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.09771442413330078 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C55493867 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[9].display_name | Biochemistry |
| concepts[10].id | https://openalex.org/C97355855 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[10].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/boosting |
| keywords[0].score | 0.7307838201522827 |
| keywords[0].display_name | Boosting (machine learning) |
| keywords[1].id | https://openalex.org/keywords/diffusion |
| keywords[1].score | 0.6590328216552734 |
| keywords[1].display_name | Diffusion |
| keywords[2].id | https://openalex.org/keywords/sequence |
| keywords[2].score | 0.5815345048904419 |
| keywords[2].display_name | Sequence (biology) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5596204996109009 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.501105785369873 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.3526690900325775 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.3501967489719391 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/chemistry |
| keywords[7].score | 0.11883261799812317 |
| keywords[7].display_name | Chemistry |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.09771442413330078 |
| keywords[8].display_name | Physics |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-7030897/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-7030897/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-7030897/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101571224 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8292-6389 |
| authorships[0].author.display_name | Zhen Cui |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I25254941 |
| authorships[0].affiliations[0].raw_affiliation_string | Beijing Normal University |
| authorships[0].institutions[0].id | https://openalex.org/I25254941 |
| authorships[0].institutions[0].ror | https://ror.org/022k4wk35 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25254941 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Normal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhen Cui |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing Normal University |
| authorships[1].author.id | https://openalex.org/A5111077643 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Xudong Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I36399199 |
| authorships[1].affiliations[0].raw_affiliation_string | Nanjing University of Science and Technology |
| authorships[1].institutions[0].id | https://openalex.org/I36399199 |
| authorships[1].institutions[0].ror | https://ror.org/00xp9wg62 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I36399199 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xudong Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Nanjing University of Science and Technology |
| authorships[2].author.id | https://openalex.org/A5100378764 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8043-237X |
| authorships[2].author.display_name | Tong Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I36399199 |
| authorships[2].affiliations[0].raw_affiliation_string | Nanjing University of Science and Technology |
| authorships[2].institutions[0].id | https://openalex.org/I36399199 |
| authorships[2].institutions[0].ror | https://ror.org/00xp9wg62 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I36399199 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nanjing University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tong Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Nanjing University of Science and Technology |
| authorships[3].author.id | https://openalex.org/A5101357601 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Xu Guo |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I36399199 |
| authorships[3].affiliations[0].raw_affiliation_string | Nanjing University of Science and Technology |
| authorships[3].institutions[0].id | https://openalex.org/I36399199 |
| authorships[3].institutions[0].ror | https://ror.org/00xp9wg62 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I36399199 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Nanjing University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xu Guo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Nanjing University of Science and Technology |
| authorships[4].author.id | https://openalex.org/A5057316846 |
| authorships[4].author.orcid | https://orcid.org/0009-0003-7843-5215 |
| authorships[4].author.display_name | Fuyun Wang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I36399199 |
| authorships[4].affiliations[0].raw_affiliation_string | Nanjing University of Science and Technology |
| authorships[4].institutions[0].id | https://openalex.org/I36399199 |
| authorships[4].institutions[0].ror | https://ror.org/00xp9wg62 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I36399199 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Nanjing University of Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fuyun Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Nanjing University of Science and Technology |
| authorships[5].author.id | https://openalex.org/A5016974436 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2594-2574 |
| authorships[5].author.display_name | Yuanzhi Wang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I36399199 |
| authorships[5].affiliations[0].raw_affiliation_string | Nanjing University of Science and Technology |
| authorships[5].institutions[0].id | https://openalex.org/I36399199 |
| authorships[5].institutions[0].ror | https://ror.org/00xp9wg62 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I36399199 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Nanjing University of Science and Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yuanzhi Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Nanjing University of Science and Technology |
| authorships[6].author.id | https://openalex.org/A5101241674 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Xing Cai |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I36399199 |
| authorships[6].affiliations[0].raw_affiliation_string | Nanjing University of Science and Technology |
| authorships[6].institutions[0].id | https://openalex.org/I36399199 |
| authorships[6].institutions[0].ror | https://ror.org/00xp9wg62 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I36399199 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Nanjing University of Science and Technology |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Xing Cai |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Nanjing University of Science and Technology |
| authorships[7].author.id | https://openalex.org/A5029771864 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-7764-5179 |
| authorships[7].author.display_name | Wenming Zheng |
| authorships[7].affiliations[0].raw_affiliation_string | Southeast University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Wenming Zheng |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Southeast University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-7030897/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Visual-like Template Diffusion: Boosting Single-Sequence Protein Structure Prediction by Adapting Image Diffusion Models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12254 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9782999753952026 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Machine Learning in Bioinformatics |
| related_works | https://openalex.org/W2125652721, https://openalex.org/W1540371141, https://openalex.org/W1549363203, https://openalex.org/W2147697413, https://openalex.org/W2154063878, https://openalex.org/W4231274751, https://openalex.org/W2556012038, https://openalex.org/W1489772951, https://openalex.org/W1538046993, https://openalex.org/W2571255492 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-7030897/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-7030897/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7030897/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-7030897/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-7030897/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7030897/v1 |
| publication_date | 2025-08-05 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2315962322, https://openalex.org/W6603192060, https://openalex.org/W6826116265, https://openalex.org/W1981276685, https://openalex.org/W6602344735, https://openalex.org/W6602949594, https://openalex.org/W6600704668 |
| referenced_works_count | 7 |
| abstract_inverted_index.a | 23, 43, 58, 109, 127, 217, 220, 268 |
| abstract_inverted_index.3D | 37 |
| abstract_inverted_index.As | 126 |
| abstract_inverted_index.By | 180 |
| abstract_inverted_index.It | 276 |
| abstract_inverted_index.an | 88 |
| abstract_inverted_index.as | 55, 68, 150, 160, 201 |
| abstract_inverted_index.be | 66, 214 |
| abstract_inverted_index.by | 93 |
| abstract_inverted_index.in | 208 |
| abstract_inverted_index.is | 116, 192, 231 |
| abstract_inverted_index.of | 190, 197, 229, 240, 255 |
| abstract_inverted_index.on | 156, 169 |
| abstract_inverted_index.or | 79 |
| abstract_inverted_index.to | 10, 30, 83, 103, 118, 236, 261, 293 |
| abstract_inverted_index.up | 295 |
| abstract_inverted_index.we | 21, 86 |
| abstract_inverted_index.(i) | 133 |
| abstract_inverted_index.10x | 235 |
| abstract_inverted_index.GPU | 187 |
| abstract_inverted_index.SCL | 184 |
| abstract_inverted_index.The | 288 |
| abstract_inverted_index.and | 33, 53, 121, 154, 162, 173, 203, 210, 244, 285 |
| abstract_inverted_index.can | 65, 213 |
| abstract_inverted_index.due | 9 |
| abstract_inverted_index.for | 40, 74, 106, 246, 271, 282 |
| abstract_inverted_index.has | 5, 290 |
| abstract_inverted_index.low | 177 |
| abstract_inverted_index.new | 269 |
| abstract_inverted_index.the | 11, 76, 95, 170, 182, 186, 226, 253 |
| abstract_inverted_index.(SD) | 98 |
| abstract_inverted_index.(ii) | 176 |
| abstract_inverted_index.4090 | 223 |
| abstract_inverted_index.GPU. | 224 |
| abstract_inverted_index.This | 250 |
| abstract_inverted_index.also | 165, 277 |
| abstract_inverted_index.been | 291 |
| abstract_inverted_index.code | 289 |
| abstract_inverted_index.from | 57, 100 |
| abstract_inverted_index.high | 12 |
| abstract_inverted_index.long | 247 |
| abstract_inverted_index.such | 159, 200 |
| abstract_inverted_index.than | 195, 238 |
| abstract_inverted_index.that | 196, 239 |
| abstract_inverted_index.time | 228 |
| abstract_inverted_index.week | 218 |
| abstract_inverted_index.with | 16 |
| abstract_inverted_index.work | 251 |
| abstract_inverted_index.(SCL) | 114 |
| abstract_inverted_index.(also | 148 |
| abstract_inverted_index.(each | 72 |
| abstract_inverted_index.(iii) | 205 |
| abstract_inverted_index.100x) | 237 |
| abstract_inverted_index.Given | 42 |
| abstract_inverted_index.Here, | 20 |
| abstract_inverted_index.RGN2, | 155 |
| abstract_inverted_index.Since | 62 |
| abstract_inverted_index.costs | 14 |
| abstract_inverted_index.drawn | 6 |
| abstract_inverted_index.image | 84 |
| abstract_inverted_index.known | 149 |
| abstract_inverted_index.lower | 194 |
| abstract_inverted_index.model | 99 |
| abstract_inverted_index.named | 28 |
| abstract_inverted_index.speed | 294 |
| abstract_inverted_index.three | 131 |
| abstract_inverted_index.using | 219 |
| abstract_inverted_index.while | 164 |
| abstract_inverted_index.(about | 234 |
| abstract_inverted_index.CASP14 | 172 |
| abstract_inverted_index.CASP15 | 174 |
| abstract_inverted_index.ESM2), | 151 |
| abstract_inverted_index.NVIDIA | 222 |
| abstract_inverted_index.Orphan | 161 |
| abstract_inverted_index.TDFold | 46, 129, 138, 191, 212, 230 |
| abstract_inverted_index.better | 134 |
| abstract_inverted_index.either | 75 |
| abstract_inverted_index.higher | 206 |
| abstract_inverted_index.highly | 34 |
| abstract_inverted_index.memory | 188 |
| abstract_inverted_index.models | 144, 260 |
| abstract_inverted_index.module | 92 |
| abstract_inverted_index.single | 221 |
| abstract_inverted_index.stable | 96 |
| abstract_inverted_index.vision | 258 |
| abstract_inverted_index.within | 216 |
| abstract_inverted_index.(PLMs), | 145 |
| abstract_inverted_index.ESMFold | 147 |
| abstract_inverted_index.TDFold, | 29 |
| abstract_inverted_index.achieve | 31 |
| abstract_inverted_index.channel | 73 |
| abstract_inverted_index.encoded | 67 |
| abstract_inverted_index.enhance | 262 |
| abstract_inverted_index.feature | 70 |
| abstract_inverted_index.greatly | 139 |
| abstract_inverted_index.method, | 27 |
| abstract_inverted_index.methods | 199, 242 |
| abstract_inverted_index.network | 115 |
| abstract_inverted_index.popular | 171, 198 |
| abstract_inverted_index.propose | 22 |
| abstract_inverted_index.protein | 2, 44, 123, 142, 248, 263, 273 |
| abstract_inverted_index.result, | 128 |
| abstract_inverted_index.results | 168 |
| abstract_inverted_index.shorter | 233 |
| abstract_inverted_index.thereby | 266 |
| abstract_inverted_index.trained | 215 |
| abstract_inverted_index.(ESMFold | 243 |
| abstract_inverted_index.ESMFold; | 204 |
| abstract_inverted_index.academic | 286 |
| abstract_inverted_index.accurate | 32, 120 |
| abstract_inverted_index.adapting | 94 |
| abstract_inverted_index.datasets | 158 |
| abstract_inverted_index.distance | 78 |
| abstract_inverted_index.existing | 141, 241 |
| abstract_inverted_index.language | 143 |
| abstract_inverted_index.learning | 113 |
| abstract_inverted_index.matrices | 71 |
| abstract_inverted_index.paradigm | 270 |
| abstract_inverted_index.powerful | 257 |
| abstract_inverted_index.released | 292 |
| abstract_inverted_index.resource | 178 |
| abstract_inverted_index.template | 25, 90, 264 |
| abstract_inverted_index.training | 209 |
| abstract_inverted_index.Orphan25, | 163 |
| abstract_inverted_index.achieving | 166 |
| abstract_inverted_index.analogous | 82 |
| abstract_inverted_index.attention | 8 |
| abstract_inverted_index.construct | 87 |
| abstract_inverted_index.diffusion | 26, 60, 91, 97, 105, 259 |
| abstract_inverted_index.efficient | 35, 122 |
| abstract_inverted_index.features, | 85 |
| abstract_inverted_index.generally | 193 |
| abstract_inverted_index.generates | 48 |
| abstract_inverted_index.including | 146 |
| abstract_inverted_index.inference | 227 |
| abstract_inverted_index.initially | 47 |
| abstract_inverted_index.obtaining | 17 |
| abstract_inverted_index.possesses | 130 |
| abstract_inverted_index.promising | 167 |
| abstract_inverted_index.proteins. | 41, 107 |
| abstract_inverted_index.research, | 280 |
| abstract_inverted_index.research. | 297 |
| abstract_inverted_index.sequence, | 45 |
| abstract_inverted_index.structure | 3, 38, 124, 274 |
| abstract_inverted_index.templates | 56 |
| abstract_inverted_index.utilizing | 181 |
| abstract_inverted_index.(distances | 52 |
| abstract_inverted_index.AlphaFold2 | 202 |
| abstract_inverted_index.OmegaFold, | 152 |
| abstract_inverted_index.associated | 15 |
| abstract_inverted_index.biological | 296 |
| abstract_inverted_index.co-evolved | 112 |
| abstract_inverted_index.efficiency | 207 |
| abstract_inverted_index.facilitate | 119 |
| abstract_inverted_index.generation | 102 |
| abstract_inverted_index.geometries | 51, 64 |
| abstract_inverted_index.homologous | 18 |
| abstract_inverted_index.increasing | 7 |
| abstract_inverted_index.inference: | 211 |
| abstract_inverted_index.leveraging | 256 |
| abstract_inverted_index.prediction | 4, 39, 136 |
| abstract_inverted_index.sequences. | 249 |
| abstract_inverted_index.AlphaFold2) | 245 |
| abstract_inverted_index.accelerates | 278 |
| abstract_inverted_index.benchmarks; | 175 |
| abstract_inverted_index.constructed | 117 |
| abstract_inverted_index.consumption | 189 |
| abstract_inverted_index.generation, | 265 |
| abstract_inverted_index.highlights: | 132 |
| abstract_inverted_index.image-level | 89 |
| abstract_inverted_index.lightweight | 110, 183 |
| abstract_inverted_index.orientation | 80 |
| abstract_inverted_index.outperforms | 140 |
| abstract_inverted_index.prediction. | 125, 275 |
| abstract_inverted_index.text-vision | 101 |
| abstract_inverted_index.visual-like | 24 |
| abstract_inverted_index.Furthermore, | 225 |
| abstract_inverted_index.consumption: | 179 |
| abstract_inverted_index.demonstrates | 252 |
| abstract_inverted_index.establishing | 267 |
| abstract_inverted_index.high-quality | 49 |
| abstract_inverted_index.information. | 19 |
| abstract_inverted_index.particularly | 281 |
| abstract_inverted_index.performance: | 137 |
| abstract_inverted_index.perspective. | 61 |
| abstract_inverted_index.universities | 284 |
| abstract_inverted_index.Subsequently, | 108 |
| abstract_inverted_index.architecture, | 185 |
| abstract_inverted_index.computational | 13 |
| abstract_inverted_index.correlation), | 81 |
| abstract_inverted_index.effectiveness | 254 |
| abstract_inverted_index.institutions. | 287 |
| abstract_inverted_index.inter-residue | 50, 63, 77 |
| abstract_inverted_index.multi-channel | 69 |
| abstract_inverted_index.orientations) | 54 |
| abstract_inverted_index.probabilistic | 59 |
| abstract_inverted_index.significantly | 232 |
| abstract_inverted_index.Single-sequence | 1 |
| abstract_inverted_index.protein-related | 279 |
| abstract_inverted_index.single-sequence | 36, 135, 272 |
| abstract_inverted_index.resource-limited | 283 |
| abstract_inverted_index.sequence-template | 104, 111 |
| abstract_inverted_index.trRosettaX-Single, | 153 |
| abstract_inverted_index.homology-insufficient | 157 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.31184796 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |