Visual-Semantic Cooperative Learning for Few-Shot SAR Target Classification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/jstars.2025.3530442
Nowadays, meta-learning is the mainstream method for solving few-shot synthetic aperture radar (SAR) target classification, devoted to learning a lot of empirical knowledge from the source domain to quickly recognize the novel classes after seeing only a few samples. However, obtaining the source domain with sufficiently labeled SAR images is difficult, leading to limited transferable empirical knowledge from the source to the target domain. Moreover, most existing methods only rely on visual images to learn the targets' feature representations, resulting in poor feature discriminability in few-shot situations. To tackle the above problems, we propose a novel visual-semantic cooperative network (VSC-Net) that involves visual and semantic dual classification to compensate for the inaccuracy of visual classification through semantic classification. First, we design textual semantic descriptions of SAR targets to exploit rich semantic information. Then, the designed textual semantic descriptions are encoded by the text encoder of the pretrained large vision language model to obtain class semantic embeddings of targets. In the visual classification stage, we develop the semantic-based visual prototype calibration module to project the class semantic embeddings to the visual space to calibrate the visual prototypes, improving the reliability of the prototypes computed from a few support samples. Besides, semantic consistency loss is proposed to constrain the accuracy of the class semantic embeddings projected to the visual space. During the semantic classification stage, the visual features of query samples are mapped into the semantic space, and their classes are predicted via searching for the nearest class semantic embeddings. Furthermore, we introduce a visual indication loss to modify the semantic classification using the calibrated visual prototypes. Ultimately, query samples' classes are decided by merging the visual and semantic classification results. We conduct adequate experiments on the SAR target dataset, which validate VSC-Net's few-shot classification efficacy.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/jstars.2025.3530442
- OA Status
- gold
- Cited By
- 2
- References
- 53
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406457877
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406457877Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jstars.2025.3530442Digital Object Identifier
- Title
-
Visual-Semantic Cooperative Learning for Few-Shot SAR Target ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Siyuan Wang, Yinghua Wang, Xiaoting Zhang, Chen Zhang, Hongwei LiuList of authors in order
- Landing page
-
https://doi.org/10.1109/jstars.2025.3530442Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/jstars.2025.3530442Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Shot (pellet), Synthetic aperture radar, Contextual image classification, Pattern recognition (psychology), Natural language processing, Remote sensing, Image (mathematics), Geology, Organic chemistry, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
53Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406457877 |
|---|---|
| doi | https://doi.org/10.1109/jstars.2025.3530442 |
| ids.doi | https://doi.org/10.1109/jstars.2025.3530442 |
| ids.openalex | https://openalex.org/W4406457877 |
| fwci | 13.85742964 |
| type | article |
| title | Visual-Semantic Cooperative Learning for Few-Shot SAR Target Classification |
| biblio.issue | |
| biblio.volume | 18 |
| biblio.last_page | 6550 |
| biblio.first_page | 6532 |
| topics[0].id | https://openalex.org/T11038 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9801999926567078 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Advanced SAR Imaging Techniques |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9771000146865845 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T13018 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9710999727249146 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Seismology and Earthquake Studies |
| is_xpac | False |
| apc_list.value | 1250 |
| apc_list.currency | USD |
| apc_list.value_usd | 1250 |
| apc_paid.value | 1250 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1250 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7850492596626282 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5824275016784668 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C2778344882 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5228890776634216 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q278938 |
| concepts[2].display_name | Shot (pellet) |
| concepts[3].id | https://openalex.org/C87360688 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4708801209926605 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q740686 |
| concepts[3].display_name | Synthetic aperture radar |
| concepts[4].id | https://openalex.org/C75294576 |
| concepts[4].level | 3 |
| concepts[4].score | 0.43572989106178284 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5165192 |
| concepts[4].display_name | Contextual image classification |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.3560958504676819 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C204321447 |
| concepts[6].level | 1 |
| concepts[6].score | 0.34342625737190247 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[6].display_name | Natural language processing |
| concepts[7].id | https://openalex.org/C62649853 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3369435667991638 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[7].display_name | Remote sensing |
| concepts[8].id | https://openalex.org/C115961682 |
| concepts[8].level | 2 |
| concepts[8].score | 0.1678914725780487 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[8].display_name | Image (mathematics) |
| concepts[9].id | https://openalex.org/C127313418 |
| concepts[9].level | 0 |
| concepts[9].score | 0.09078913927078247 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[9].display_name | Geology |
| concepts[10].id | https://openalex.org/C178790620 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[10].display_name | Organic chemistry |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7850492596626282 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5824275016784668 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/shot |
| keywords[2].score | 0.5228890776634216 |
| keywords[2].display_name | Shot (pellet) |
| keywords[3].id | https://openalex.org/keywords/synthetic-aperture-radar |
| keywords[3].score | 0.4708801209926605 |
| keywords[3].display_name | Synthetic aperture radar |
| keywords[4].id | https://openalex.org/keywords/contextual-image-classification |
| keywords[4].score | 0.43572989106178284 |
| keywords[4].display_name | Contextual image classification |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.3560958504676819 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/natural-language-processing |
| keywords[6].score | 0.34342625737190247 |
| keywords[6].display_name | Natural language processing |
| keywords[7].id | https://openalex.org/keywords/remote-sensing |
| keywords[7].score | 0.3369435667991638 |
| keywords[7].display_name | Remote sensing |
| keywords[8].id | https://openalex.org/keywords/image |
| keywords[8].score | 0.1678914725780487 |
| keywords[8].display_name | Image (mathematics) |
| keywords[9].id | https://openalex.org/keywords/geology |
| keywords[9].score | 0.09078913927078247 |
| keywords[9].display_name | Geology |
| language | en |
| locations[0].id | doi:10.1109/jstars.2025.3530442 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S117727964 |
| locations[0].source.issn | 1939-1404, 2151-1535 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1939-1404 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.1109/jstars.2025.3530442 |
| locations[1].id | pmh:oai:doaj.org/article:efbed9c5d32d4e3f94fad8802881e594 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 18, Pp 6532-6550 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/efbed9c5d32d4e3f94fad8802881e594 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5006532323 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5743-5318 |
| authorships[0].author.display_name | Siyuan Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[0].affiliations[0].raw_affiliation_string | National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China |
| authorships[0].institutions[0].id | https://openalex.org/I149594827 |
| authorships[0].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xidian University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Siyuan Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China |
| authorships[1].author.id | https://openalex.org/A5018469371 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7993-2809 |
| authorships[1].author.display_name | Yinghua Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[1].affiliations[0].raw_affiliation_string | National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China |
| authorships[1].institutions[0].id | https://openalex.org/I149594827 |
| authorships[1].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xidian University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yinghua Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China |
| authorships[2].author.id | https://openalex.org/A5100400108 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5436-8682 |
| authorships[2].author.display_name | Xiaoting Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[2].affiliations[0].raw_affiliation_string | National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China |
| authorships[2].institutions[0].id | https://openalex.org/I149594827 |
| authorships[2].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xidian University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaoting Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China |
| authorships[3].author.id | https://openalex.org/A5026884594 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0486-8208 |
| authorships[3].author.display_name | Chen Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[3].affiliations[0].raw_affiliation_string | National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China |
| authorships[3].institutions[0].id | https://openalex.org/I149594827 |
| authorships[3].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xidian University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chen Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China |
| authorships[4].author.id | https://openalex.org/A5100411968 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4046-163X |
| authorships[4].author.display_name | Hongwei Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[4].affiliations[0].raw_affiliation_string | National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China |
| authorships[4].institutions[0].id | https://openalex.org/I149594827 |
| authorships[4].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Xidian University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Hongwei Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/jstars.2025.3530442 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Visual-Semantic Cooperative Learning for Few-Shot SAR Target Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11038 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9801999926567078 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Advanced SAR Imaging Techniques |
| related_works | https://openalex.org/W2074502265, https://openalex.org/W4214877189, https://openalex.org/W2773965352, https://openalex.org/W2381179799, https://openalex.org/W2980279061, https://openalex.org/W2334685461, https://openalex.org/W4252699458, https://openalex.org/W4210966920, https://openalex.org/W2156233651, https://openalex.org/W2550009779 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/jstars.2025.3530442 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S117727964 |
| best_oa_location.source.issn | 1939-1404, 2151-1535 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1939-1404 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.1109/jstars.2025.3530442 |
| primary_location.id | doi:10.1109/jstars.2025.3530442 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S117727964 |
| primary_location.source.issn | 1939-1404, 2151-1535 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1939-1404 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.1109/jstars.2025.3530442 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2410591237, https://openalex.org/W2292481059, https://openalex.org/W2990641522, https://openalex.org/W3215715933, https://openalex.org/W4285129541, https://openalex.org/W6842417546, https://openalex.org/W4377971457, https://openalex.org/W4285212662, https://openalex.org/W2998624838, https://openalex.org/W2964105864, https://openalex.org/W3205249428, https://openalex.org/W6717697761, https://openalex.org/W3131740536, https://openalex.org/W4387789476, https://openalex.org/W3205196764, https://openalex.org/W4389169330, https://openalex.org/W4367359381, https://openalex.org/W4379983660, https://openalex.org/W3024314529, https://openalex.org/W6759807521, https://openalex.org/W2894906112, https://openalex.org/W3030509278, https://openalex.org/W6763320462, https://openalex.org/W3182874523, https://openalex.org/W3211737808, https://openalex.org/W2982247743, https://openalex.org/W6785340150, https://openalex.org/W3143107425, https://openalex.org/W6603820874, https://openalex.org/W2962716320, https://openalex.org/W4210314542, https://openalex.org/W6802136708, https://openalex.org/W6791353385, https://openalex.org/W2970641574, https://openalex.org/W6803872405, https://openalex.org/W6790019176, https://openalex.org/W4386790226, https://openalex.org/W6810334672, https://openalex.org/W6849714649, https://openalex.org/W3135205122, https://openalex.org/W6843148593, https://openalex.org/W3213042253, https://openalex.org/W3198106997, https://openalex.org/W3121583704, https://openalex.org/W6810564453, https://openalex.org/W4387803215, https://openalex.org/W4388428078, https://openalex.org/W2250539671, https://openalex.org/W4328007697, https://openalex.org/W6682889407, https://openalex.org/W3116529608, https://openalex.org/W6959754100, https://openalex.org/W2194775991 |
| referenced_works_count | 53 |
| abstract_inverted_index.a | 18, 36, 94, 194, 251 |
| abstract_inverted_index.In | 158 |
| abstract_inverted_index.To | 87 |
| abstract_inverted_index.We | 279 |
| abstract_inverted_index.by | 140, 271 |
| abstract_inverted_index.in | 80, 84 |
| abstract_inverted_index.is | 2, 49, 202 |
| abstract_inverted_index.of | 20, 112, 124, 144, 156, 189, 208, 226 |
| abstract_inverted_index.on | 70, 283 |
| abstract_inverted_index.to | 16, 27, 52, 60, 73, 107, 127, 151, 171, 177, 181, 204, 214, 255 |
| abstract_inverted_index.we | 92, 119, 163, 249 |
| abstract_inverted_index.SAR | 47, 125, 285 |
| abstract_inverted_index.and | 103, 235, 275 |
| abstract_inverted_index.are | 138, 229, 238, 269 |
| abstract_inverted_index.few | 37, 195 |
| abstract_inverted_index.for | 6, 109, 242 |
| abstract_inverted_index.lot | 19 |
| abstract_inverted_index.the | 3, 24, 30, 41, 58, 61, 75, 89, 110, 133, 141, 145, 159, 165, 173, 178, 183, 187, 190, 206, 209, 215, 219, 223, 232, 243, 257, 261, 273, 284 |
| abstract_inverted_index.via | 240 |
| abstract_inverted_index.dual | 105 |
| abstract_inverted_index.from | 23, 57, 193 |
| abstract_inverted_index.into | 231 |
| abstract_inverted_index.loss | 201, 254 |
| abstract_inverted_index.most | 65 |
| abstract_inverted_index.only | 35, 68 |
| abstract_inverted_index.poor | 81 |
| abstract_inverted_index.rely | 69 |
| abstract_inverted_index.rich | 129 |
| abstract_inverted_index.text | 142 |
| abstract_inverted_index.that | 100 |
| abstract_inverted_index.with | 44 |
| abstract_inverted_index.(SAR) | 12 |
| abstract_inverted_index.Then, | 132 |
| abstract_inverted_index.above | 90 |
| abstract_inverted_index.after | 33 |
| abstract_inverted_index.class | 153, 174, 210, 245 |
| abstract_inverted_index.large | 147 |
| abstract_inverted_index.learn | 74 |
| abstract_inverted_index.model | 150 |
| abstract_inverted_index.novel | 31, 95 |
| abstract_inverted_index.query | 227, 266 |
| abstract_inverted_index.radar | 11 |
| abstract_inverted_index.space | 180 |
| abstract_inverted_index.their | 236 |
| abstract_inverted_index.using | 260 |
| abstract_inverted_index.which | 288 |
| abstract_inverted_index.During | 218 |
| abstract_inverted_index.First, | 118 |
| abstract_inverted_index.design | 120 |
| abstract_inverted_index.domain | 26, 43 |
| abstract_inverted_index.images | 48, 72 |
| abstract_inverted_index.mapped | 230 |
| abstract_inverted_index.method | 5 |
| abstract_inverted_index.modify | 256 |
| abstract_inverted_index.module | 170 |
| abstract_inverted_index.obtain | 152 |
| abstract_inverted_index.seeing | 34 |
| abstract_inverted_index.source | 25, 42, 59 |
| abstract_inverted_index.space, | 234 |
| abstract_inverted_index.space. | 217 |
| abstract_inverted_index.stage, | 162, 222 |
| abstract_inverted_index.tackle | 88 |
| abstract_inverted_index.target | 13, 62, 286 |
| abstract_inverted_index.vision | 148 |
| abstract_inverted_index.visual | 71, 102, 113, 160, 167, 179, 184, 216, 224, 252, 263, 274 |
| abstract_inverted_index.classes | 32, 237, 268 |
| abstract_inverted_index.conduct | 280 |
| abstract_inverted_index.decided | 270 |
| abstract_inverted_index.develop | 164 |
| abstract_inverted_index.devoted | 15 |
| abstract_inverted_index.domain. | 63 |
| abstract_inverted_index.encoded | 139 |
| abstract_inverted_index.encoder | 143 |
| abstract_inverted_index.exploit | 128 |
| abstract_inverted_index.feature | 77, 82 |
| abstract_inverted_index.labeled | 46 |
| abstract_inverted_index.leading | 51 |
| abstract_inverted_index.limited | 53 |
| abstract_inverted_index.merging | 272 |
| abstract_inverted_index.methods | 67 |
| abstract_inverted_index.nearest | 244 |
| abstract_inverted_index.network | 98 |
| abstract_inverted_index.project | 172 |
| abstract_inverted_index.propose | 93 |
| abstract_inverted_index.quickly | 28 |
| abstract_inverted_index.samples | 228 |
| abstract_inverted_index.solving | 7 |
| abstract_inverted_index.support | 196 |
| abstract_inverted_index.targets | 126 |
| abstract_inverted_index.textual | 121, 135 |
| abstract_inverted_index.through | 115 |
| abstract_inverted_index.Besides, | 198 |
| abstract_inverted_index.However, | 39 |
| abstract_inverted_index.accuracy | 207 |
| abstract_inverted_index.adequate | 281 |
| abstract_inverted_index.aperture | 10 |
| abstract_inverted_index.computed | 192 |
| abstract_inverted_index.dataset, | 287 |
| abstract_inverted_index.designed | 134 |
| abstract_inverted_index.existing | 66 |
| abstract_inverted_index.features | 225 |
| abstract_inverted_index.few-shot | 8, 85, 291 |
| abstract_inverted_index.involves | 101 |
| abstract_inverted_index.language | 149 |
| abstract_inverted_index.learning | 17 |
| abstract_inverted_index.proposed | 203 |
| abstract_inverted_index.results. | 278 |
| abstract_inverted_index.samples. | 38, 197 |
| abstract_inverted_index.semantic | 104, 116, 122, 130, 136, 154, 175, 199, 211, 220, 233, 246, 258, 276 |
| abstract_inverted_index.targets. | 157 |
| abstract_inverted_index.validate | 289 |
| abstract_inverted_index.(VSC-Net) | 99 |
| abstract_inverted_index.Moreover, | 64 |
| abstract_inverted_index.Nowadays, | 0 |
| abstract_inverted_index.calibrate | 182 |
| abstract_inverted_index.constrain | 205 |
| abstract_inverted_index.efficacy. | 293 |
| abstract_inverted_index.empirical | 21, 55 |
| abstract_inverted_index.improving | 186 |
| abstract_inverted_index.introduce | 250 |
| abstract_inverted_index.knowledge | 22, 56 |
| abstract_inverted_index.obtaining | 40 |
| abstract_inverted_index.predicted | 239 |
| abstract_inverted_index.problems, | 91 |
| abstract_inverted_index.projected | 213 |
| abstract_inverted_index.prototype | 168 |
| abstract_inverted_index.recognize | 29 |
| abstract_inverted_index.resulting | 79 |
| abstract_inverted_index.searching | 241 |
| abstract_inverted_index.synthetic | 9 |
| abstract_inverted_index.calibrated | 262 |
| abstract_inverted_index.compensate | 108 |
| abstract_inverted_index.difficult, | 50 |
| abstract_inverted_index.embeddings | 155, 176, 212 |
| abstract_inverted_index.inaccuracy | 111 |
| abstract_inverted_index.indication | 253 |
| abstract_inverted_index.mainstream | 4 |
| abstract_inverted_index.pretrained | 146 |
| abstract_inverted_index.prototypes | 191 |
| abstract_inverted_index.Ultimately, | 265 |
| abstract_inverted_index.calibration | 169 |
| abstract_inverted_index.consistency | 200 |
| abstract_inverted_index.cooperative | 97 |
| abstract_inverted_index.embeddings. | 247 |
| abstract_inverted_index.experiments | 282 |
| abstract_inverted_index.prototypes, | 185 |
| abstract_inverted_index.prototypes. | 264 |
| abstract_inverted_index.reliability | 188 |
| abstract_inverted_index.situations. | 86 |
| abstract_inverted_index.Furthermore, | 248 |
| abstract_inverted_index.descriptions | 123, 137 |
| abstract_inverted_index.information. | 131 |
| abstract_inverted_index.sufficiently | 45 |
| abstract_inverted_index.transferable | 54 |
| abstract_inverted_index.meta-learning | 1 |
| abstract_inverted_index.classification | 106, 114, 161, 221, 259, 277, 292 |
| abstract_inverted_index.semantic-based | 166 |
| abstract_inverted_index.classification, | 14 |
| abstract_inverted_index.classification. | 117 |
| abstract_inverted_index.samples' | 267 |
| abstract_inverted_index.targets' | 76 |
| abstract_inverted_index.visual-semantic | 96 |
| abstract_inverted_index.VSC-Net's | 290 |
| abstract_inverted_index.discriminability | 83 |
| abstract_inverted_index.representations, | 78 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.95532398 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |