Visualization for Interval Data Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.19617396
Interval data are widely used in many fields, notably in economics, industry, and health areas. Analogous to the scatterplot for single-value data, the rectangle plot and cross plot are the conventional visualization methods for the relationship between two variables in interval forms. These methods do not provide much information to assess complicated relationships, however. In this article, we propose two visualization methods: Segment and Dandelion plots. They offer much more information than the existing visualization methods and allow us to have a much better understanding of the relationship between two variables in interval forms. A general guide for reading these plots is provided. Relevant theoretical support is developed. Both empirical and real data examples are provided to demonstrate the advantages of the proposed visualization methods. Supplementary materials for this article are available online.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.6084/m9.figshare.19617396
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394401035
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394401035Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6084/m9.figshare.19617396Digital Object Identifier
- Title
-
Visualization for Interval DataWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Muzi Zhang, Dennis K. J. LinList of authors in order
- Landing page
-
https://doi.org/10.6084/m9.figshare.19617396Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.6084/m9.figshare.19617396Direct OA link when available
- Concepts
-
Visualization, Interval (graph theory), Computer science, Data visualization, Data mining, Mathematics, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394401035 |
|---|---|
| doi | https://doi.org/10.6084/m9.figshare.19617396 |
| ids.doi | https://doi.org/10.6084/m9.figshare.19617396 |
| ids.openalex | https://openalex.org/W4394401035 |
| fwci | |
| type | dataset |
| title | Visualization for Interval Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10799 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8205000162124634 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Data Visualization and Analytics |
| topics[1].id | https://openalex.org/T10317 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.8148999810218811 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Advanced Database Systems and Queries |
| topics[2].id | https://openalex.org/T11195 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.8029000163078308 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Simulation Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C36464697 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6276010870933533 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[0].display_name | Visualization |
| concepts[1].id | https://openalex.org/C2778067643 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5973643064498901 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q166507 |
| concepts[1].display_name | Interval (graph theory) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5041512250900269 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C172367668 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4859427213668823 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6504956 |
| concepts[3].display_name | Data visualization |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3235251307487488 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.19429674744606018 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C114614502 |
| concepts[6].level | 1 |
| concepts[6].score | 0.06763768196105957 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[6].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/visualization |
| keywords[0].score | 0.6276010870933533 |
| keywords[0].display_name | Visualization |
| keywords[1].id | https://openalex.org/keywords/interval |
| keywords[1].score | 0.5973643064498901 |
| keywords[1].display_name | Interval (graph theory) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5041512250900269 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/data-visualization |
| keywords[3].score | 0.4859427213668823 |
| keywords[3].display_name | Data visualization |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.3235251307487488 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.19429674744606018 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/combinatorics |
| keywords[6].score | 0.06763768196105957 |
| keywords[6].display_name | Combinatorics |
| language | en |
| locations[0].id | doi:10.6084/m9.figshare.19617396 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.6084/m9.figshare.19617396 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5101660129 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1724-9721 |
| authorships[0].author.display_name | Muzi Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Muzi Zhang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5057669385 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2552-7709 |
| authorships[1].author.display_name | Dennis K. J. Lin |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Dennis K. J. Lin |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.6084/m9.figshare.19617396 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Visualization for Interval Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10799 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8205000162124634 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Data Visualization and Analytics |
| related_works | https://openalex.org/W2013728941, https://openalex.org/W4225274103, https://openalex.org/W2579659702, https://openalex.org/W2154046714, https://openalex.org/W1965329638, https://openalex.org/W1574055964, https://openalex.org/W2923661510, https://openalex.org/W2189613078, https://openalex.org/W2586219255, https://openalex.org/W2547096368 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.6084/m9.figshare.19617396 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.6084/m9.figshare.19617396 |
| primary_location.id | doi:10.6084/m9.figshare.19617396 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.6084/m9.figshare.19617396 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 94 |
| abstract_inverted_index.a | 81 |
| abstract_inverted_index.In | 54 |
| abstract_inverted_index.do | 44 |
| abstract_inverted_index.in | 5, 9, 39, 91 |
| abstract_inverted_index.is | 101, 106 |
| abstract_inverted_index.of | 85, 120 |
| abstract_inverted_index.to | 16, 49, 79, 116 |
| abstract_inverted_index.us | 78 |
| abstract_inverted_index.we | 57 |
| abstract_inverted_index.and | 12, 25, 63, 76, 110 |
| abstract_inverted_index.are | 2, 28, 114, 130 |
| abstract_inverted_index.for | 19, 33, 97, 127 |
| abstract_inverted_index.not | 45 |
| abstract_inverted_index.the | 17, 22, 29, 34, 72, 86, 118, 121 |
| abstract_inverted_index.two | 37, 59, 89 |
| abstract_inverted_index.Both | 108 |
| abstract_inverted_index.They | 66 |
| abstract_inverted_index.data | 1, 112 |
| abstract_inverted_index.have | 80 |
| abstract_inverted_index.many | 6 |
| abstract_inverted_index.more | 69 |
| abstract_inverted_index.much | 47, 68, 82 |
| abstract_inverted_index.plot | 24, 27 |
| abstract_inverted_index.real | 111 |
| abstract_inverted_index.than | 71 |
| abstract_inverted_index.this | 55, 128 |
| abstract_inverted_index.used | 4 |
| abstract_inverted_index.These | 42 |
| abstract_inverted_index.allow | 77 |
| abstract_inverted_index.cross | 26 |
| abstract_inverted_index.data, | 21 |
| abstract_inverted_index.guide | 96 |
| abstract_inverted_index.offer | 67 |
| abstract_inverted_index.plots | 100 |
| abstract_inverted_index.these | 99 |
| abstract_inverted_index.areas. | 14 |
| abstract_inverted_index.assess | 50 |
| abstract_inverted_index.better | 83 |
| abstract_inverted_index.forms. | 41, 93 |
| abstract_inverted_index.health | 13 |
| abstract_inverted_index.plots. | 65 |
| abstract_inverted_index.widely | 3 |
| abstract_inverted_index.Segment | 62 |
| abstract_inverted_index.article | 129 |
| abstract_inverted_index.between | 36, 88 |
| abstract_inverted_index.fields, | 7 |
| abstract_inverted_index.general | 95 |
| abstract_inverted_index.methods | 32, 43, 75 |
| abstract_inverted_index.notably | 8 |
| abstract_inverted_index.online. | 132 |
| abstract_inverted_index.propose | 58 |
| abstract_inverted_index.provide | 46 |
| abstract_inverted_index.reading | 98 |
| abstract_inverted_index.support | 105 |
| abstract_inverted_index.Interval | 0 |
| abstract_inverted_index.Relevant | 103 |
| abstract_inverted_index.article, | 56 |
| abstract_inverted_index.examples | 113 |
| abstract_inverted_index.existing | 73 |
| abstract_inverted_index.however. | 53 |
| abstract_inverted_index.interval | 40, 92 |
| abstract_inverted_index.methods. | 124 |
| abstract_inverted_index.methods: | 61 |
| abstract_inverted_index.proposed | 122 |
| abstract_inverted_index.provided | 115 |
| abstract_inverted_index.Analogous | 15 |
| abstract_inverted_index.Dandelion | 64 |
| abstract_inverted_index.available | 131 |
| abstract_inverted_index.empirical | 109 |
| abstract_inverted_index.industry, | 11 |
| abstract_inverted_index.materials | 126 |
| abstract_inverted_index.provided. | 102 |
| abstract_inverted_index.rectangle | 23 |
| abstract_inverted_index.variables | 38, 90 |
| abstract_inverted_index.advantages | 119 |
| abstract_inverted_index.developed. | 107 |
| abstract_inverted_index.economics, | 10 |
| abstract_inverted_index.complicated | 51 |
| abstract_inverted_index.demonstrate | 117 |
| abstract_inverted_index.information | 48, 70 |
| abstract_inverted_index.scatterplot | 18 |
| abstract_inverted_index.theoretical | 104 |
| abstract_inverted_index.conventional | 30 |
| abstract_inverted_index.relationship | 35, 87 |
| abstract_inverted_index.single-value | 20 |
| abstract_inverted_index.Supplementary | 125 |
| abstract_inverted_index.understanding | 84 |
| abstract_inverted_index.visualization | 31, 60, 74, 123 |
| abstract_inverted_index.relationships, | 52 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |