Voice-Cloning Artificial-Intelligence Speakers Can Also Mimic Human-Specific Vocal Expression Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202312.0807.v1
This study investigated the capability of vocal-identity-cloning Artificial Intelligence (AI) to encode human-specific confident, doubtful, and neutral-intending emotive states. Linear mixed-effects models and machine learning classification with eXtreme Gradient Boosting were employed to examine the underlying acoustic signatures from 2,700 audio clips, comprising of sentences spoken by human speakers and two sets of equivalences (AI-Geography/AI-Trivia, based on the trained text) generated by voice-cloning models designed to clone human speakers’ identities. Compared with neutral-intending voice, human speakers lengthened their vocal tract, raised the fundamental frequency, and increased Chroma constant-Q transform when they intended to be confident; An opposite pattern was shown when they intended to be doubtful. The two sets of AI sounds displayed a similar pattern to human speech, suggesting a shared mechanism for encoding vocal expression across sources. The 1,000 times training-testing classification models reported an in-group advantage for AI sources. The algorithms, trained on AI-Geography/AI-Trivia, resulted in higher accuracies when tested within these AI sources than when tested on human audio. All between-source classifications reported above-chance-level (1/3) accuracies. These findings highlighted that voice-cloning AI, the widely used conversational agent, can learn and generate human-specific vocally-expressed confidence.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202312.0807.v1
- https://www.preprints.org/manuscript/202312.0807/v1/download
- OA Status
- green
- Cited By
- 6
- References
- 144
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389752730
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389752730Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202312.0807.v1Digital Object Identifier
- Title
-
Voice-Cloning Artificial-Intelligence Speakers Can Also Mimic Human-Specific Vocal ExpressionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-13Full publication date if available
- Authors
-
Wenjun Chen, Xiaoming JiangList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202312.0807.v1Publisher landing page
- PDF URL
-
https://www.preprints.org/manuscript/202312.0807/v1/downloadDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.preprints.org/manuscript/202312.0807/v1/downloadDirect OA link when available
- Concepts
-
ENCODE, Speech recognition, Cloning (programming), Computer science, Human voice, Vocal tract, Expression (computer science), Artificial intelligence, Human cloning, Natural language processing, Biology, Programming language, Gene, Genetics, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 2, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
144Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389752730 |
|---|---|
| doi | https://doi.org/10.20944/preprints202312.0807.v1 |
| ids.doi | https://doi.org/10.20944/preprints202312.0807.v1 |
| ids.openalex | https://openalex.org/W4389752730 |
| fwci | 1.53265733 |
| type | preprint |
| title | Voice-Cloning Artificial-Intelligence Speakers Can Also Mimic Human-Specific Vocal Expression |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10201 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8950999975204468 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Speech Recognition and Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C66746571 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6118705868721008 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1134833 |
| concepts[0].display_name | ENCODE |
| concepts[1].id | https://openalex.org/C28490314 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5951029062271118 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[1].display_name | Speech recognition |
| concepts[2].id | https://openalex.org/C121050878 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5911961793899536 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5135020 |
| concepts[2].display_name | Cloning (programming) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5297965407371521 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C20766975 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4864201545715332 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7390 |
| concepts[4].display_name | Human voice |
| concepts[5].id | https://openalex.org/C47401133 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48408427834510803 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q748953 |
| concepts[5].display_name | Vocal tract |
| concepts[6].id | https://openalex.org/C90559484 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4567694365978241 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q778379 |
| concepts[6].display_name | Expression (computer science) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4423457086086273 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C175000728 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4407583773136139 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q586573 |
| concepts[8].display_name | Human cloning |
| concepts[9].id | https://openalex.org/C204321447 |
| concepts[9].level | 1 |
| concepts[9].score | 0.42198652029037476 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[9].display_name | Natural language processing |
| concepts[10].id | https://openalex.org/C86803240 |
| concepts[10].level | 0 |
| concepts[10].score | 0.09952861070632935 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[10].display_name | Biology |
| concepts[11].id | https://openalex.org/C199360897 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[11].display_name | Programming language |
| concepts[12].id | https://openalex.org/C104317684 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[12].display_name | Gene |
| concepts[13].id | https://openalex.org/C54355233 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[13].display_name | Genetics |
| concepts[14].id | https://openalex.org/C55493867 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[14].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/encode |
| keywords[0].score | 0.6118705868721008 |
| keywords[0].display_name | ENCODE |
| keywords[1].id | https://openalex.org/keywords/speech-recognition |
| keywords[1].score | 0.5951029062271118 |
| keywords[1].display_name | Speech recognition |
| keywords[2].id | https://openalex.org/keywords/cloning |
| keywords[2].score | 0.5911961793899536 |
| keywords[2].display_name | Cloning (programming) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5297965407371521 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/human-voice |
| keywords[4].score | 0.4864201545715332 |
| keywords[4].display_name | Human voice |
| keywords[5].id | https://openalex.org/keywords/vocal-tract |
| keywords[5].score | 0.48408427834510803 |
| keywords[5].display_name | Vocal tract |
| keywords[6].id | https://openalex.org/keywords/expression |
| keywords[6].score | 0.4567694365978241 |
| keywords[6].display_name | Expression (computer science) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4423457086086273 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/human-cloning |
| keywords[8].score | 0.4407583773136139 |
| keywords[8].display_name | Human cloning |
| keywords[9].id | https://openalex.org/keywords/natural-language-processing |
| keywords[9].score | 0.42198652029037476 |
| keywords[9].display_name | Natural language processing |
| keywords[10].id | https://openalex.org/keywords/biology |
| keywords[10].score | 0.09952861070632935 |
| keywords[10].display_name | Biology |
| language | en |
| locations[0].id | doi:10.20944/preprints202312.0807.v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.preprints.org/manuscript/202312.0807/v1/download |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202312.0807.v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100346252 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3870-5041 |
| authorships[0].author.display_name | Wenjun Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I11406153, https://openalex.org/I4210121707 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Linguistics, Shanghai International Studies University, Shanghai 201620, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210121707 |
| authorships[0].institutions[0].ror | https://ror.org/02mrea437 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I114218197, https://openalex.org/I4210121707 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Institute of Linguistics |
| authorships[0].institutions[1].id | https://openalex.org/I11406153 |
| authorships[0].institutions[1].ror | https://ror.org/01bn89z48 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I11406153 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Shanghai International Studies University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wenjun Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Linguistics, Shanghai International Studies University, Shanghai 201620, China |
| authorships[1].author.id | https://openalex.org/A5073988299 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5171-9774 |
| authorships[1].author.display_name | Xiaoming Jiang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I11406153, https://openalex.org/I4210121707 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Linguistics, Shanghai International Studies University, Shanghai 201620, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I11406153 |
| authorships[1].affiliations[1].raw_affiliation_string | Key Laboratory of Language Science and Multilingual Intelligence Applications, Shanghai International Studies University, Shanghai 201620, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210121707 |
| authorships[1].institutions[0].ror | https://ror.org/02mrea437 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I114218197, https://openalex.org/I4210121707 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Institute of Linguistics |
| authorships[1].institutions[1].id | https://openalex.org/I11406153 |
| authorships[1].institutions[1].ror | https://ror.org/01bn89z48 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I11406153 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Shanghai International Studies University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Xiaoming Jiang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Institute of Linguistics, Shanghai International Studies University, Shanghai 201620, China, Key Laboratory of Language Science and Multilingual Intelligence Applications, Shanghai International Studies University, Shanghai 201620, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.preprints.org/manuscript/202312.0807/v1/download |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Voice-Cloning Artificial-Intelligence Speakers Can Also Mimic Human-Specific Vocal Expression |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10201 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8950999975204468 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Speech Recognition and Synthesis |
| related_works | https://openalex.org/W2044609815, https://openalex.org/W3122315315, https://openalex.org/W2410132598, https://openalex.org/W2347415770, https://openalex.org/W2393170429, https://openalex.org/W4237070580, https://openalex.org/W1585122714, https://openalex.org/W2088607405, https://openalex.org/W2361311680, https://openalex.org/W2351350273 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202312.0807.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.preprints.org/manuscript/202312.0807/v1/download |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202312.0807.v1 |
| primary_location.id | doi:10.20944/preprints202312.0807.v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.preprints.org/manuscript/202312.0807/v1/download |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202312.0807.v1 |
| publication_date | 2023-12-13 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2994747594, https://openalex.org/W4220894258, https://openalex.org/W2080576537, https://openalex.org/W3177843851, https://openalex.org/W4206101926, https://openalex.org/W6748588790, https://openalex.org/W2889215488, https://openalex.org/W3200811867, https://openalex.org/W2166563626, https://openalex.org/W6808848966, https://openalex.org/W806587654, https://openalex.org/W2075242969, https://openalex.org/W2268619641, https://openalex.org/W3162362284, https://openalex.org/W2047870254, https://openalex.org/W2009444049, https://openalex.org/W2889310216, https://openalex.org/W4224325974, https://openalex.org/W6910681941, https://openalex.org/W4220796574, https://openalex.org/W2158727502, https://openalex.org/W1901546569, https://openalex.org/W6643818150, https://openalex.org/W4389752730, https://openalex.org/W3097779478, https://openalex.org/W3194113400, https://openalex.org/W3135698874, https://openalex.org/W2887919024, https://openalex.org/W3160467219, https://openalex.org/W1967845871, https://openalex.org/W4289527594, https://openalex.org/W2083116372, https://openalex.org/W3094397887, https://openalex.org/W1990503781, https://openalex.org/W4319337088, https://openalex.org/W2168101041, https://openalex.org/W3127154451, https://openalex.org/W2922235922, https://openalex.org/W6685059264, https://openalex.org/W3164427237, https://openalex.org/W2886867781, https://openalex.org/W2610124020, https://openalex.org/W2918087949, https://openalex.org/W3209706424, https://openalex.org/W4295308403, https://openalex.org/W2773080983, https://openalex.org/W2074996852, https://openalex.org/W2143705060, https://openalex.org/W4297841902, https://openalex.org/W4312123684, https://openalex.org/W2808706139, https://openalex.org/W3196174396, https://openalex.org/W1997578623, https://openalex.org/W1976687454, https://openalex.org/W6733192915, https://openalex.org/W2808556767, https://openalex.org/W2094644322, https://openalex.org/W2625397849, https://openalex.org/W4283724181, https://openalex.org/W2921105016, https://openalex.org/W2012204351, https://openalex.org/W4317513692, https://openalex.org/W3000139089, https://openalex.org/W1985970965, https://openalex.org/W3162620513, https://openalex.org/W2340774457, https://openalex.org/W1981077332, https://openalex.org/W2810057059, https://openalex.org/W2948786677, https://openalex.org/W2029001185, https://openalex.org/W2047751016, https://openalex.org/W4399639995, https://openalex.org/W4313334613, https://openalex.org/W3200496752, https://openalex.org/W3129337289, https://openalex.org/W4319862723, https://openalex.org/W6671207847, https://openalex.org/W2022625505, https://openalex.org/W3111588685, https://openalex.org/W2345937213, https://openalex.org/W4362653009, https://openalex.org/W4214853204, https://openalex.org/W2090716327, https://openalex.org/W2018084695, https://openalex.org/W6671377369, https://openalex.org/W2989876916, https://openalex.org/W6943896262, https://openalex.org/W2592877795, https://openalex.org/W1972057112, https://openalex.org/W3011878778, https://openalex.org/W2109875745, https://openalex.org/W2270649225, https://openalex.org/W4305071460, https://openalex.org/W2072857138, https://openalex.org/W2786105104, https://openalex.org/W2041771838, https://openalex.org/W1964926804, https://openalex.org/W3212239333, https://openalex.org/W3126364126, https://openalex.org/W4200443057, https://openalex.org/W1977913050, https://openalex.org/W4229448711, https://openalex.org/W6807892083, https://openalex.org/W2141236743, https://openalex.org/W4205892352, https://openalex.org/W4200463711, https://openalex.org/W3131248882, https://openalex.org/W4378472755, https://openalex.org/W6681442338, https://openalex.org/W2028443633, https://openalex.org/W567437002, https://openalex.org/W4376616421, https://openalex.org/W2170637665, https://openalex.org/W3121228205, https://openalex.org/W2944673218, https://openalex.org/W7027822436, https://openalex.org/W2016478805, https://openalex.org/W2748501745, https://openalex.org/W2079597002, https://openalex.org/W3171857508, https://openalex.org/W2972921407, https://openalex.org/W2974028964, https://openalex.org/W6849093563, https://openalex.org/W4213235736, https://openalex.org/W2053444187, https://openalex.org/W4297206627, https://openalex.org/W4237528625, https://openalex.org/W4213253049, https://openalex.org/W1974260243, https://openalex.org/W2885885989, https://openalex.org/W2788357188, https://openalex.org/W2083569984, https://openalex.org/W2254909196, https://openalex.org/W2295598076, https://openalex.org/W4319294844, https://openalex.org/W4236725977, https://openalex.org/W4313196646, https://openalex.org/W4225941123, https://openalex.org/W2752952126, https://openalex.org/W2913871793, https://openalex.org/W2580613877, https://openalex.org/W2170027724, https://openalex.org/W3175759161, https://openalex.org/W2191779130 |
| referenced_works_count | 144 |
| abstract_inverted_index.a | 113, 120 |
| abstract_inverted_index.AI | 110, 140, 155 |
| abstract_inverted_index.An | 95 |
| abstract_inverted_index.an | 136 |
| abstract_inverted_index.be | 93, 104 |
| abstract_inverted_index.by | 46, 61 |
| abstract_inverted_index.in | 148 |
| abstract_inverted_index.of | 5, 43, 52, 109 |
| abstract_inverted_index.on | 56, 145, 160 |
| abstract_inverted_index.to | 10, 32, 65, 92, 103, 116 |
| abstract_inverted_index.AI, | 175 |
| abstract_inverted_index.All | 163 |
| abstract_inverted_index.The | 106, 129, 142 |
| abstract_inverted_index.and | 15, 22, 49, 84, 183 |
| abstract_inverted_index.can | 181 |
| abstract_inverted_index.for | 123, 139 |
| abstract_inverted_index.the | 3, 34, 57, 81, 176 |
| abstract_inverted_index.two | 50, 107 |
| abstract_inverted_index.was | 98 |
| abstract_inverted_index.(AI) | 9 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.from | 38 |
| abstract_inverted_index.sets | 51, 108 |
| abstract_inverted_index.than | 157 |
| abstract_inverted_index.that | 173 |
| abstract_inverted_index.they | 90, 101 |
| abstract_inverted_index.used | 178 |
| abstract_inverted_index.were | 30 |
| abstract_inverted_index.when | 89, 100, 151, 158 |
| abstract_inverted_index.with | 26, 71 |
| abstract_inverted_index.(1/3) | 168 |
| abstract_inverted_index.1,000 | 130 |
| abstract_inverted_index.2,700 | 39 |
| abstract_inverted_index.These | 170 |
| abstract_inverted_index.audio | 40 |
| abstract_inverted_index.based | 55 |
| abstract_inverted_index.clone | 66 |
| abstract_inverted_index.human | 47, 67, 74, 117, 161 |
| abstract_inverted_index.learn | 182 |
| abstract_inverted_index.shown | 99 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.text) | 59 |
| abstract_inverted_index.their | 77 |
| abstract_inverted_index.these | 154 |
| abstract_inverted_index.times | 131 |
| abstract_inverted_index.vocal | 78, 125 |
| abstract_inverted_index.Chroma | 86 |
| abstract_inverted_index.Linear | 19 |
| abstract_inverted_index.across | 127 |
| abstract_inverted_index.agent, | 180 |
| abstract_inverted_index.audio. | 162 |
| abstract_inverted_index.clips, | 41 |
| abstract_inverted_index.encode | 11 |
| abstract_inverted_index.higher | 149 |
| abstract_inverted_index.models | 21, 63, 134 |
| abstract_inverted_index.raised | 80 |
| abstract_inverted_index.shared | 121 |
| abstract_inverted_index.sounds | 111 |
| abstract_inverted_index.spoken | 45 |
| abstract_inverted_index.tested | 152, 159 |
| abstract_inverted_index.tract, | 79 |
| abstract_inverted_index.voice, | 73 |
| abstract_inverted_index.widely | 177 |
| abstract_inverted_index.within | 153 |
| abstract_inverted_index.eXtreme | 27 |
| abstract_inverted_index.emotive | 17 |
| abstract_inverted_index.examine | 33 |
| abstract_inverted_index.machine | 23 |
| abstract_inverted_index.pattern | 97, 115 |
| abstract_inverted_index.similar | 114 |
| abstract_inverted_index.sources | 156 |
| abstract_inverted_index.speech, | 118 |
| abstract_inverted_index.states. | 18 |
| abstract_inverted_index.trained | 58, 144 |
| abstract_inverted_index.Boosting | 29 |
| abstract_inverted_index.Compared | 70 |
| abstract_inverted_index.Gradient | 28 |
| abstract_inverted_index.acoustic | 36 |
| abstract_inverted_index.designed | 64 |
| abstract_inverted_index.employed | 31 |
| abstract_inverted_index.encoding | 124 |
| abstract_inverted_index.findings | 171 |
| abstract_inverted_index.generate | 184 |
| abstract_inverted_index.in-group | 137 |
| abstract_inverted_index.intended | 91, 102 |
| abstract_inverted_index.learning | 24 |
| abstract_inverted_index.opposite | 96 |
| abstract_inverted_index.reported | 135, 166 |
| abstract_inverted_index.resulted | 147 |
| abstract_inverted_index.sources. | 128, 141 |
| abstract_inverted_index.speakers | 48, 75 |
| abstract_inverted_index.advantage | 138 |
| abstract_inverted_index.displayed | 112 |
| abstract_inverted_index.doubtful, | 14 |
| abstract_inverted_index.doubtful. | 105 |
| abstract_inverted_index.generated | 60 |
| abstract_inverted_index.increased | 85 |
| abstract_inverted_index.mechanism | 122 |
| abstract_inverted_index.sentences | 44 |
| abstract_inverted_index.transform | 88 |
| abstract_inverted_index.Artificial | 7 |
| abstract_inverted_index.accuracies | 150 |
| abstract_inverted_index.capability | 4 |
| abstract_inverted_index.comprising | 42 |
| abstract_inverted_index.confident, | 13 |
| abstract_inverted_index.confident; | 94 |
| abstract_inverted_index.constant-Q | 87 |
| abstract_inverted_index.expression | 126 |
| abstract_inverted_index.frequency, | 83 |
| abstract_inverted_index.lengthened | 76 |
| abstract_inverted_index.signatures | 37 |
| abstract_inverted_index.suggesting | 119 |
| abstract_inverted_index.underlying | 35 |
| abstract_inverted_index.accuracies. | 169 |
| abstract_inverted_index.algorithms, | 143 |
| abstract_inverted_index.confidence. | 187 |
| abstract_inverted_index.fundamental | 82 |
| abstract_inverted_index.highlighted | 172 |
| abstract_inverted_index.identities. | 69 |
| abstract_inverted_index.Intelligence | 8 |
| abstract_inverted_index.equivalences | 53 |
| abstract_inverted_index.investigated | 2 |
| abstract_inverted_index.mixed-effects | 20 |
| abstract_inverted_index.voice-cloning | 62, 174 |
| abstract_inverted_index.between-source | 164 |
| abstract_inverted_index.classification | 25, 133 |
| abstract_inverted_index.conversational | 179 |
| abstract_inverted_index.human-specific | 12, 185 |
| abstract_inverted_index.classifications | 165 |
| abstract_inverted_index.training-testing | 132 |
| abstract_inverted_index.neutral-intending | 16, 72 |
| abstract_inverted_index.vocally-expressed | 186 |
| abstract_inverted_index.above-chance-level | 167 |
| abstract_inverted_index.speakers’ | 68 |
| abstract_inverted_index.vocal-identity-cloning | 6 |
| abstract_inverted_index.AI-Geography/AI-Trivia, | 146 |
| abstract_inverted_index.(AI-Geography/AI-Trivia, | 54 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5073988299 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I11406153, https://openalex.org/I4210121707 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.84094891 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |