Voltage-sag source detection: Developing supervised methods and proposing a new unsupervised learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.segan.2022.100855
Recognition and analysis of voltage sags (dips) allow network operators to predict and prevent problems in real-life applications. Clearing the voltage sag source by direction detection methods is the most effective way to solve and improve the voltage sags and their related problems. However, the existing analytical methods use single or two input features as phasor-based (PB) or instantaneous-based (IB) values. Hence, their limited maximum accuracy is given at 93% and 84% when using PB features for noiseless and high-level noise signals, respectively. To increase the detection accuracy, the main contributions of this research by proposing machine learning (ML) methods include: (a) Developing nine supervised methods including support vector machine (SVM)-based, tree-based, others, and an ensemble learning of said methods, and providing a comparative analysis (b) Employing a set of PB, IB, and both PB and IB input features as noiseless and noisy; (c) Finding the best developed supervised methods by highest possible accuracy under subsets said in (b); (d) Proposing a new unsupervised method fed by both PB and IB features using a sparse principal component analysis (SPCA) applied to a k-means clustering with an internal SPCA approach. The proposed unsupervised schema does not use the upstream/downstream labels in developed supervised methods. Extensive simulations of voltage sags due to fault and transformer energizing on a Brazilian regional network show that regardless of the sag sources, input feature subset, and noise levels, the random forest (RF) models yield the best performance so that noiseless-RF (99.84%) using both PB and IB features is the most effective one. The proposed unsupervised method outcomes an overall accuracy of 99.17%-noiseless and about 90% for high-level noises. This performance is higher than analytical methods, very close to SVM-based supervised methods, and uses no predefined labels. Moreover, the results of Slovenian field measurements confirm the effectiveness of the best-developed supervised methods and the proposed unsupervised learning.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.segan.2022.100855
- OA Status
- hybrid
- Cited By
- 20
- References
- 71
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4285678702
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4285678702Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.segan.2022.100855Digital Object Identifier
- Title
-
Voltage-sag source detection: Developing supervised methods and proposing a new unsupervised learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-17Full publication date if available
- Authors
-
Younes Mohammadi, Seyed Mahdi Miraftabzadeh, Math Bollen, Michela LongoList of authors in order
- Landing page
-
https://doi.org/10.1016/j.segan.2022.100855Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.segan.2022.100855Direct OA link when available
- Concepts
-
Artificial intelligence, Support vector machine, Pattern recognition (psychology), Computer science, Supervised learning, Cluster analysis, Unsupervised learning, Random forest, Voltage sag, Machine learning, Feature vector, Data mining, Voltage, Engineering, Artificial neural network, Power quality, Electrical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
20Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 5, 2023: 7, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
71Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4285678702 |
|---|---|
| doi | https://doi.org/10.1016/j.segan.2022.100855 |
| ids.doi | https://doi.org/10.1016/j.segan.2022.100855 |
| ids.openalex | https://openalex.org/W4285678702 |
| fwci | 2.15293441 |
| type | article |
| title | Voltage-sag source detection: Developing supervised methods and proposing a new unsupervised learning |
| biblio.issue | |
| biblio.volume | 32 |
| biblio.last_page | 100855 |
| biblio.first_page | 100855 |
| topics[0].id | https://openalex.org/T10573 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Power Quality and Harmonics |
| topics[1].id | https://openalex.org/T11343 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9970999956130981 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Power Transformer Diagnostics and Insulation |
| topics[2].id | https://openalex.org/T11052 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9904999732971191 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list.value | 2280 |
| apc_list.currency | USD |
| apc_list.value_usd | 2280 |
| apc_paid.value | 2280 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2280 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5925949811935425 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C12267149 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5811399221420288 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[1].display_name | Support vector machine |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5658238530158997 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5555812120437622 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C136389625 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5022125244140625 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[4].display_name | Supervised learning |
| concepts[5].id | https://openalex.org/C73555534 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4740307629108429 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[5].display_name | Cluster analysis |
| concepts[6].id | https://openalex.org/C8038995 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4664532542228699 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1152135 |
| concepts[6].display_name | Unsupervised learning |
| concepts[7].id | https://openalex.org/C169258074 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4488362669944763 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[7].display_name | Random forest |
| concepts[8].id | https://openalex.org/C2781134633 |
| concepts[8].level | 4 |
| concepts[8].score | 0.44060182571411133 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q14945479 |
| concepts[8].display_name | Voltage sag |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4388044476509094 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C83665646 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4146224558353424 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q42139305 |
| concepts[10].display_name | Feature vector |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.40481990575790405 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C165801399 |
| concepts[12].level | 2 |
| concepts[12].score | 0.34286585450172424 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[12].display_name | Voltage |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2766157388687134 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C50644808 |
| concepts[14].level | 2 |
| concepts[14].score | 0.1390083134174347 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[14].display_name | Artificial neural network |
| concepts[15].id | https://openalex.org/C2779665505 |
| concepts[15].level | 3 |
| concepts[15].score | 0.09046688675880432 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1780079 |
| concepts[15].display_name | Power quality |
| concepts[16].id | https://openalex.org/C119599485 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[16].display_name | Electrical engineering |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.5925949811935425 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/support-vector-machine |
| keywords[1].score | 0.5811399221420288 |
| keywords[1].display_name | Support vector machine |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.5658238530158997 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5555812120437622 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/supervised-learning |
| keywords[4].score | 0.5022125244140625 |
| keywords[4].display_name | Supervised learning |
| keywords[5].id | https://openalex.org/keywords/cluster-analysis |
| keywords[5].score | 0.4740307629108429 |
| keywords[5].display_name | Cluster analysis |
| keywords[6].id | https://openalex.org/keywords/unsupervised-learning |
| keywords[6].score | 0.4664532542228699 |
| keywords[6].display_name | Unsupervised learning |
| keywords[7].id | https://openalex.org/keywords/random-forest |
| keywords[7].score | 0.4488362669944763 |
| keywords[7].display_name | Random forest |
| keywords[8].id | https://openalex.org/keywords/voltage-sag |
| keywords[8].score | 0.44060182571411133 |
| keywords[8].display_name | Voltage sag |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.4388044476509094 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/feature-vector |
| keywords[10].score | 0.4146224558353424 |
| keywords[10].display_name | Feature vector |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.40481990575790405 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/voltage |
| keywords[12].score | 0.34286585450172424 |
| keywords[12].display_name | Voltage |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.2766157388687134 |
| keywords[13].display_name | Engineering |
| keywords[14].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[14].score | 0.1390083134174347 |
| keywords[14].display_name | Artificial neural network |
| keywords[15].id | https://openalex.org/keywords/power-quality |
| keywords[15].score | 0.09046688675880432 |
| keywords[15].display_name | Power quality |
| language | en |
| locations[0].id | doi:10.1016/j.segan.2022.100855 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2493549543 |
| locations[0].source.issn | 2352-4677 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2352-4677 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Sustainable Energy Grids and Networks |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sustainable Energy, Grids and Networks |
| locations[0].landing_page_url | https://doi.org/10.1016/j.segan.2022.100855 |
| locations[1].id | pmh:oai:re.public.polimi.it:11311/1234003 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400312 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Virtual Community of Pathological Anatomy (University of Castilla La Mancha) |
| locations[1].source.host_organization | https://openalex.org/I79189158 |
| locations[1].source.host_organization_name | University of Castilla-La Mancha |
| locations[1].source.host_organization_lineage | https://openalex.org/I79189158 |
| locations[1].license | other-oa |
| locations[1].pdf_url | https://re.public.polimi.it/bitstream/11311/1234003/2/11311-1234003%20Miraftabzadeh.pdf |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://hdl.handle.net/11311/1234003 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5084092310 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8660-5569 |
| authorships[0].author.display_name | Younes Mohammadi |
| authorships[0].countries | SE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I190632392, https://openalex.org/I4210100733 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Engineering Sciences and Mathematics, Luleå University of Technology, Skellefteå Campus, Forskargatan 1, 93187 Skellefteå, Sweden |
| authorships[0].institutions[0].id | https://openalex.org/I190632392 |
| authorships[0].institutions[0].ror | https://ror.org/016st3p78 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I190632392 |
| authorships[0].institutions[0].country_code | SE |
| authorships[0].institutions[0].display_name | Luleå University of Technology |
| authorships[0].institutions[1].id | https://openalex.org/I4210100733 |
| authorships[0].institutions[1].ror | https://ror.org/0133j5m54 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210100733 |
| authorships[0].institutions[1].country_code | SE |
| authorships[0].institutions[1].display_name | Skellefteå Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Younes Mohammadi |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Engineering Sciences and Mathematics, Luleå University of Technology, Skellefteå Campus, Forskargatan 1, 93187 Skellefteå, Sweden |
| authorships[1].author.id | https://openalex.org/A5003174186 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4746-2208 |
| authorships[1].author.display_name | Seyed Mahdi Miraftabzadeh |
| authorships[1].countries | IT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I93860229 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy |
| authorships[1].institutions[0].id | https://openalex.org/I93860229 |
| authorships[1].institutions[0].ror | https://ror.org/01nffqt88 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I93860229 |
| authorships[1].institutions[0].country_code | IT |
| authorships[1].institutions[0].display_name | Politecnico di Milano |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Seyed Mahdi Miraftabzadeh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy |
| authorships[2].author.id | https://openalex.org/A5046391029 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4074-9529 |
| authorships[2].author.display_name | Math Bollen |
| authorships[2].countries | SE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I190632392, https://openalex.org/I4210100733 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Engineering Sciences and Mathematics, Luleå University of Technology, Skellefteå Campus, Forskargatan 1, 93187 Skellefteå, Sweden |
| authorships[2].institutions[0].id | https://openalex.org/I190632392 |
| authorships[2].institutions[0].ror | https://ror.org/016st3p78 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I190632392 |
| authorships[2].institutions[0].country_code | SE |
| authorships[2].institutions[0].display_name | Luleå University of Technology |
| authorships[2].institutions[1].id | https://openalex.org/I4210100733 |
| authorships[2].institutions[1].ror | https://ror.org/0133j5m54 |
| authorships[2].institutions[1].type | healthcare |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210100733 |
| authorships[2].institutions[1].country_code | SE |
| authorships[2].institutions[1].display_name | Skellefteå Hospital |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Math H.J. Bollen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Engineering Sciences and Mathematics, Luleå University of Technology, Skellefteå Campus, Forskargatan 1, 93187 Skellefteå, Sweden |
| authorships[3].author.id | https://openalex.org/A5074047579 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3780-4980 |
| authorships[3].author.display_name | Michela Longo |
| authorships[3].countries | IT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I93860229 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy |
| authorships[3].institutions[0].id | https://openalex.org/I93860229 |
| authorships[3].institutions[0].ror | https://ror.org/01nffqt88 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I93860229 |
| authorships[3].institutions[0].country_code | IT |
| authorships[3].institutions[0].display_name | Politecnico di Milano |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Michela Longo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.segan.2022.100855 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Voltage-sag source detection: Developing supervised methods and proposing a new unsupervised learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10573 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Power Quality and Harmonics |
| related_works | https://openalex.org/W1980222719, https://openalex.org/W3148060700, https://openalex.org/W3161976747, https://openalex.org/W3080681248, https://openalex.org/W4376646226, https://openalex.org/W3047177827, https://openalex.org/W4287685660, https://openalex.org/W2057778272, https://openalex.org/W4319302697, https://openalex.org/W2986085304 |
| cited_by_count | 20 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 7 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.segan.2022.100855 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2493549543 |
| best_oa_location.source.issn | 2352-4677 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2352-4677 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Sustainable Energy Grids and Networks |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sustainable Energy, Grids and Networks |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.segan.2022.100855 |
| primary_location.id | doi:10.1016/j.segan.2022.100855 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2493549543 |
| primary_location.source.issn | 2352-4677 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2352-4677 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Sustainable Energy Grids and Networks |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sustainable Energy, Grids and Networks |
| primary_location.landing_page_url | https://doi.org/10.1016/j.segan.2022.100855 |
| publication_date | 2022-07-17 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2612093242, https://openalex.org/W2944064191, https://openalex.org/W2568852106, https://openalex.org/W6680789722, https://openalex.org/W1075257716, https://openalex.org/W1965149289, https://openalex.org/W2148801982, https://openalex.org/W2153630487, https://openalex.org/W6681453283, https://openalex.org/W2122907832, https://openalex.org/W6641274353, https://openalex.org/W6773981605, https://openalex.org/W6680852401, https://openalex.org/W765402945, https://openalex.org/W6649722005, https://openalex.org/W1529106503, https://openalex.org/W6625289268, https://openalex.org/W2495086869, https://openalex.org/W1995739282, https://openalex.org/W2983921489, https://openalex.org/W3003169815, https://openalex.org/W1519290896, https://openalex.org/W6603700831, https://openalex.org/W2047412753, https://openalex.org/W2072525819, https://openalex.org/W6680251645, https://openalex.org/W1969640817, https://openalex.org/W2088834094, https://openalex.org/W2623258158, https://openalex.org/W6792366225, https://openalex.org/W3043761582, https://openalex.org/W2137171697, https://openalex.org/W4251129457, https://openalex.org/W3116703639, https://openalex.org/W2057614804, https://openalex.org/W2569663479, https://openalex.org/W3045826573, https://openalex.org/W3035979280, https://openalex.org/W3138775251, https://openalex.org/W3192879061, https://openalex.org/W6778579495, https://openalex.org/W6832477279, https://openalex.org/W3105747666, https://openalex.org/W3150630824, https://openalex.org/W2562628264, https://openalex.org/W4213351107, https://openalex.org/W3192916918, https://openalex.org/W6677005406, https://openalex.org/W4297957988, https://openalex.org/W6766670390, https://openalex.org/W2261059368, https://openalex.org/W2624483752, https://openalex.org/W2792328488, https://openalex.org/W2089468765, https://openalex.org/W2117756735, https://openalex.org/W6838705129, https://openalex.org/W2982371601, https://openalex.org/W6833833595, https://openalex.org/W2397579385, https://openalex.org/W2812096095, https://openalex.org/W6680384594, https://openalex.org/W6839240791, https://openalex.org/W4281251422, https://openalex.org/W108379496, https://openalex.org/W4248677984, https://openalex.org/W2187089797, https://openalex.org/W969517473, https://openalex.org/W2383475402, https://openalex.org/W4250782632, https://openalex.org/W3030482522, https://openalex.org/W90533042 |
| referenced_works_count | 71 |
| abstract_inverted_index.a | 122, 127, 161, 173, 181, 215 |
| abstract_inverted_index.IB | 136, 170, 249 |
| abstract_inverted_index.PB | 74, 134, 168, 247 |
| abstract_inverted_index.To | 83 |
| abstract_inverted_index.an | 114, 185, 261 |
| abstract_inverted_index.as | 54, 139 |
| abstract_inverted_index.at | 68 |
| abstract_inverted_index.by | 23, 94, 150, 166 |
| abstract_inverted_index.in | 15, 157, 199 |
| abstract_inverted_index.is | 27, 66, 251, 274 |
| abstract_inverted_index.no | 287 |
| abstract_inverted_index.of | 3, 91, 117, 129, 205, 222, 264, 293, 300 |
| abstract_inverted_index.on | 214 |
| abstract_inverted_index.or | 50, 57 |
| abstract_inverted_index.so | 241 |
| abstract_inverted_index.to | 10, 32, 180, 209, 281 |
| abstract_inverted_index.(a) | 101 |
| abstract_inverted_index.(b) | 125 |
| abstract_inverted_index.(c) | 143 |
| abstract_inverted_index.(d) | 159 |
| abstract_inverted_index.84% | 71 |
| abstract_inverted_index.90% | 268 |
| abstract_inverted_index.93% | 69 |
| abstract_inverted_index.IB, | 131 |
| abstract_inverted_index.PB, | 130 |
| abstract_inverted_index.The | 189, 256 |
| abstract_inverted_index.and | 1, 12, 34, 39, 70, 78, 113, 120, 132, 135, 141, 169, 211, 229, 248, 266, 285, 305 |
| abstract_inverted_index.due | 208 |
| abstract_inverted_index.fed | 165 |
| abstract_inverted_index.for | 76, 269 |
| abstract_inverted_index.new | 162 |
| abstract_inverted_index.not | 194 |
| abstract_inverted_index.sag | 21, 224 |
| abstract_inverted_index.set | 128 |
| abstract_inverted_index.the | 19, 28, 36, 44, 85, 88, 145, 196, 223, 232, 238, 252, 291, 298, 301, 306 |
| abstract_inverted_index.two | 51 |
| abstract_inverted_index.use | 48, 195 |
| abstract_inverted_index.way | 31 |
| abstract_inverted_index.(IB) | 59 |
| abstract_inverted_index.(ML) | 98 |
| abstract_inverted_index.(PB) | 56 |
| abstract_inverted_index.(RF) | 235 |
| abstract_inverted_index.(b); | 158 |
| abstract_inverted_index.SPCA | 187 |
| abstract_inverted_index.This | 272 |
| abstract_inverted_index.best | 146, 239 |
| abstract_inverted_index.both | 133, 167, 246 |
| abstract_inverted_index.does | 193 |
| abstract_inverted_index.main | 89 |
| abstract_inverted_index.most | 29, 253 |
| abstract_inverted_index.nine | 103 |
| abstract_inverted_index.one. | 255 |
| abstract_inverted_index.sags | 5, 38, 207 |
| abstract_inverted_index.said | 118, 156 |
| abstract_inverted_index.show | 219 |
| abstract_inverted_index.than | 276 |
| abstract_inverted_index.that | 220, 242 |
| abstract_inverted_index.this | 92 |
| abstract_inverted_index.uses | 286 |
| abstract_inverted_index.very | 279 |
| abstract_inverted_index.when | 72 |
| abstract_inverted_index.with | 184 |
| abstract_inverted_index.about | 267 |
| abstract_inverted_index.allow | 7 |
| abstract_inverted_index.close | 280 |
| abstract_inverted_index.fault | 210 |
| abstract_inverted_index.field | 295 |
| abstract_inverted_index.given | 67 |
| abstract_inverted_index.input | 52, 137, 226 |
| abstract_inverted_index.noise | 80, 230 |
| abstract_inverted_index.solve | 33 |
| abstract_inverted_index.their | 40, 62 |
| abstract_inverted_index.under | 154 |
| abstract_inverted_index.using | 73, 172, 245 |
| abstract_inverted_index.yield | 237 |
| abstract_inverted_index.(SPCA) | 178 |
| abstract_inverted_index.(dips) | 6 |
| abstract_inverted_index.Hence, | 61 |
| abstract_inverted_index.forest | 234 |
| abstract_inverted_index.higher | 275 |
| abstract_inverted_index.labels | 198 |
| abstract_inverted_index.method | 164, 259 |
| abstract_inverted_index.models | 236 |
| abstract_inverted_index.noisy; | 142 |
| abstract_inverted_index.random | 233 |
| abstract_inverted_index.schema | 192 |
| abstract_inverted_index.single | 49 |
| abstract_inverted_index.source | 22 |
| abstract_inverted_index.sparse | 174 |
| abstract_inverted_index.vector | 108 |
| abstract_inverted_index.Finding | 144 |
| abstract_inverted_index.applied | 179 |
| abstract_inverted_index.confirm | 297 |
| abstract_inverted_index.feature | 227 |
| abstract_inverted_index.highest | 151 |
| abstract_inverted_index.improve | 35 |
| abstract_inverted_index.k-means | 182 |
| abstract_inverted_index.labels. | 289 |
| abstract_inverted_index.levels, | 231 |
| abstract_inverted_index.limited | 63 |
| abstract_inverted_index.machine | 96, 109 |
| abstract_inverted_index.maximum | 64 |
| abstract_inverted_index.methods | 26, 47, 99, 105, 149, 304 |
| abstract_inverted_index.network | 8, 218 |
| abstract_inverted_index.noises. | 271 |
| abstract_inverted_index.others, | 112 |
| abstract_inverted_index.overall | 262 |
| abstract_inverted_index.predict | 11 |
| abstract_inverted_index.prevent | 13 |
| abstract_inverted_index.related | 41 |
| abstract_inverted_index.results | 292 |
| abstract_inverted_index.subset, | 228 |
| abstract_inverted_index.subsets | 155 |
| abstract_inverted_index.support | 107 |
| abstract_inverted_index.values. | 60 |
| abstract_inverted_index.voltage | 4, 20, 37, 206 |
| abstract_inverted_index.(99.84%) | 244 |
| abstract_inverted_index.Clearing | 18 |
| abstract_inverted_index.However, | 43 |
| abstract_inverted_index.accuracy | 65, 153, 263 |
| abstract_inverted_index.analysis | 2, 124, 177 |
| abstract_inverted_index.ensemble | 115 |
| abstract_inverted_index.existing | 45 |
| abstract_inverted_index.features | 53, 75, 138, 171, 250 |
| abstract_inverted_index.include: | 100 |
| abstract_inverted_index.increase | 84 |
| abstract_inverted_index.internal | 186 |
| abstract_inverted_index.learning | 97, 116 |
| abstract_inverted_index.methods, | 119, 278, 284 |
| abstract_inverted_index.methods. | 202 |
| abstract_inverted_index.outcomes | 260 |
| abstract_inverted_index.possible | 152 |
| abstract_inverted_index.problems | 14 |
| abstract_inverted_index.proposed | 190, 257, 307 |
| abstract_inverted_index.regional | 217 |
| abstract_inverted_index.research | 93 |
| abstract_inverted_index.signals, | 81 |
| abstract_inverted_index.sources, | 225 |
| abstract_inverted_index.Brazilian | 216 |
| abstract_inverted_index.Employing | 126 |
| abstract_inverted_index.Extensive | 203 |
| abstract_inverted_index.Moreover, | 290 |
| abstract_inverted_index.Proposing | 160 |
| abstract_inverted_index.SVM-based | 282 |
| abstract_inverted_index.Slovenian | 294 |
| abstract_inverted_index.accuracy, | 87 |
| abstract_inverted_index.approach. | 188 |
| abstract_inverted_index.component | 176 |
| abstract_inverted_index.detection | 25, 86 |
| abstract_inverted_index.developed | 147, 200 |
| abstract_inverted_index.direction | 24 |
| abstract_inverted_index.effective | 30, 254 |
| abstract_inverted_index.including | 106 |
| abstract_inverted_index.learning. | 309 |
| abstract_inverted_index.noiseless | 77, 140 |
| abstract_inverted_index.operators | 9 |
| abstract_inverted_index.principal | 175 |
| abstract_inverted_index.problems. | 42 |
| abstract_inverted_index.proposing | 95 |
| abstract_inverted_index.providing | 121 |
| abstract_inverted_index.real-life | 16 |
| abstract_inverted_index.Developing | 102 |
| abstract_inverted_index.analytical | 46, 277 |
| abstract_inverted_index.clustering | 183 |
| abstract_inverted_index.energizing | 213 |
| abstract_inverted_index.high-level | 79, 270 |
| abstract_inverted_index.predefined | 288 |
| abstract_inverted_index.regardless | 221 |
| abstract_inverted_index.supervised | 104, 148, 201, 283, 303 |
| abstract_inverted_index.Recognition | 0 |
| abstract_inverted_index.comparative | 123 |
| abstract_inverted_index.performance | 240, 273 |
| abstract_inverted_index.simulations | 204 |
| abstract_inverted_index.transformer | 212 |
| abstract_inverted_index.tree-based, | 111 |
| abstract_inverted_index.(SVM)-based, | 110 |
| abstract_inverted_index.measurements | 296 |
| abstract_inverted_index.noiseless-RF | 243 |
| abstract_inverted_index.phasor-based | 55 |
| abstract_inverted_index.unsupervised | 163, 191, 258, 308 |
| abstract_inverted_index.applications. | 17 |
| abstract_inverted_index.contributions | 90 |
| abstract_inverted_index.effectiveness | 299 |
| abstract_inverted_index.respectively. | 82 |
| abstract_inverted_index.best-developed | 302 |
| abstract_inverted_index.99.17%-noiseless | 265 |
| abstract_inverted_index.instantaneous-based | 58 |
| abstract_inverted_index.upstream/downstream | 197 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5084092310 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I190632392, https://openalex.org/I4210100733 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/12 |
| sustainable_development_goals[0].score | 0.6000000238418579 |
| sustainable_development_goals[0].display_name | Responsible consumption and production |
| citation_normalized_percentile.value | 0.86341739 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |