VQ4ALL: Efficient Neural Network Representation via a Universal Codebook Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.06875
The rapid growth of the big neural network models puts forward new requirements for lightweight network representation methods. The traditional methods based on model compression have achieved great success, especially VQ technology which realizes the high compression ratio of models by sharing code words. However, because each layer of the network needs to build a code table, the traditional top-down compression technology lacks attention to the underlying commonalities, resulting in limited compression rate and frequent memory access. In this paper, we propose a bottom-up method to share the universal codebook among multiple neural networks, which not only effectively reduces the number of codebooks but also further reduces the memory access and chip area by storing static code tables in the built-in ROM. Specifically, we introduce VQ4ALL, a VQ-based method that utilizes codewords to enable the construction of various neural networks and achieve efficient representations. The core idea of our method is to adopt a kernel density estimation approach to extract a universal codebook and then progressively construct different low-bit networks by updating differentiable assignments. Experimental results demonstrate that VQ4ALL achieves compression rates exceeding 16 $\times$ while preserving high accuracy across multiple network architectures, highlighting its effectiveness and versatility.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.06875
- https://arxiv.org/pdf/2412.06875
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405254655
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405254655Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.06875Digital Object Identifier
- Title
-
VQ4ALL: Efficient Neural Network Representation via a Universal CodebookWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-09Full publication date if available
- Authors
-
Juncan Deng, Shuaiting Li, Zeyu Wang, Hong Gu, Kedong Xu, Kejie HuangList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.06875Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.06875Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.06875Direct OA link when available
- Concepts
-
Codebook, Representation (politics), Artificial neural network, Computer science, Artificial intelligence, Political science, Politics, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405254655 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.06875 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.06875 |
| ids.openalex | https://openalex.org/W4405254655 |
| fwci | |
| type | preprint |
| title | VQ4ALL: Efficient Neural Network Representation via a Universal Codebook |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8299999833106995 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C127759330 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9469667673110962 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q637416 |
| concepts[0].display_name | Codebook |
| concepts[1].id | https://openalex.org/C2776359362 |
| concepts[1].level | 3 |
| concepts[1].score | 0.661614179611206 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[1].display_name | Representation (politics) |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5872888565063477 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5338541269302368 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3681481182575226 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C17744445 |
| concepts[5].level | 0 |
| concepts[5].score | 0.04896506667137146 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[5].display_name | Political science |
| concepts[6].id | https://openalex.org/C94625758 |
| concepts[6].level | 2 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[6].display_name | Politics |
| concepts[7].id | https://openalex.org/C199539241 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[7].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/codebook |
| keywords[0].score | 0.9469667673110962 |
| keywords[0].display_name | Codebook |
| keywords[1].id | https://openalex.org/keywords/representation |
| keywords[1].score | 0.661614179611206 |
| keywords[1].display_name | Representation (politics) |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.5872888565063477 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5338541269302368 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3681481182575226 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/political-science |
| keywords[5].score | 0.04896506667137146 |
| keywords[5].display_name | Political science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.06875 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.06875 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.06875 |
| locations[1].id | doi:10.48550/arxiv.2412.06875 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.06875 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5065813707 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0860-4442 |
| authorships[0].author.display_name | Juncan Deng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Deng, Juncan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5019049217 |
| authorships[1].author.orcid | https://orcid.org/0009-0002-7726-4883 |
| authorships[1].author.display_name | Shuaiting Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Shuaiting |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100379682 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5374-6330 |
| authorships[2].author.display_name | Zeyu Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Zeyu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101434406 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8224-146X |
| authorships[3].author.display_name | Hong Gu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gu, Hong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5111345577 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Kedong Xu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xu, Kedong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5091073331 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3722-9979 |
| authorships[5].author.display_name | Kejie Huang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Huang, Kejie |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.06875 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | VQ4ALL: Efficient Neural Network Representation via a Universal Codebook |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8299999833106995 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2293149949, https://openalex.org/W2026099691, https://openalex.org/W4284672201, https://openalex.org/W2377486419, https://openalex.org/W2943202426, https://openalex.org/W2137816434, https://openalex.org/W2163679795 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.06875 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.06875 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.06875 |
| primary_location.id | pmh:oai:arXiv.org:2412.06875 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.06875 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.06875 |
| publication_date | 2024-12-09 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 54, 82, 126, 153, 160 |
| abstract_inverted_index.16 | 183 |
| abstract_inverted_index.In | 77 |
| abstract_inverted_index.VQ | 30 |
| abstract_inverted_index.by | 40, 113, 170 |
| abstract_inverted_index.in | 69, 118 |
| abstract_inverted_index.is | 150 |
| abstract_inverted_index.of | 3, 38, 48, 101, 136, 147 |
| abstract_inverted_index.on | 22 |
| abstract_inverted_index.to | 52, 64, 85, 132, 151, 158 |
| abstract_inverted_index.we | 80, 123 |
| abstract_inverted_index.The | 0, 18, 144 |
| abstract_inverted_index.and | 73, 110, 140, 163, 196 |
| abstract_inverted_index.big | 5 |
| abstract_inverted_index.but | 103 |
| abstract_inverted_index.for | 13 |
| abstract_inverted_index.its | 194 |
| abstract_inverted_index.new | 11 |
| abstract_inverted_index.not | 95 |
| abstract_inverted_index.our | 148 |
| abstract_inverted_index.the | 4, 34, 49, 57, 65, 87, 99, 107, 119, 134 |
| abstract_inverted_index.ROM. | 121 |
| abstract_inverted_index.also | 104 |
| abstract_inverted_index.area | 112 |
| abstract_inverted_index.chip | 111 |
| abstract_inverted_index.code | 42, 55, 116 |
| abstract_inverted_index.core | 145 |
| abstract_inverted_index.each | 46 |
| abstract_inverted_index.have | 25 |
| abstract_inverted_index.high | 35, 187 |
| abstract_inverted_index.idea | 146 |
| abstract_inverted_index.only | 96 |
| abstract_inverted_index.puts | 9 |
| abstract_inverted_index.rate | 72 |
| abstract_inverted_index.that | 129, 177 |
| abstract_inverted_index.then | 164 |
| abstract_inverted_index.this | 78 |
| abstract_inverted_index.adopt | 152 |
| abstract_inverted_index.among | 90 |
| abstract_inverted_index.based | 21 |
| abstract_inverted_index.build | 53 |
| abstract_inverted_index.great | 27 |
| abstract_inverted_index.lacks | 62 |
| abstract_inverted_index.layer | 47 |
| abstract_inverted_index.model | 23 |
| abstract_inverted_index.needs | 51 |
| abstract_inverted_index.rapid | 1 |
| abstract_inverted_index.rates | 181 |
| abstract_inverted_index.ratio | 37 |
| abstract_inverted_index.share | 86 |
| abstract_inverted_index.which | 32, 94 |
| abstract_inverted_index.while | 185 |
| abstract_inverted_index.VQ4ALL | 178 |
| abstract_inverted_index.access | 109 |
| abstract_inverted_index.across | 189 |
| abstract_inverted_index.enable | 133 |
| abstract_inverted_index.growth | 2 |
| abstract_inverted_index.kernel | 154 |
| abstract_inverted_index.memory | 75, 108 |
| abstract_inverted_index.method | 84, 128, 149 |
| abstract_inverted_index.models | 8, 39 |
| abstract_inverted_index.neural | 6, 92, 138 |
| abstract_inverted_index.number | 100 |
| abstract_inverted_index.paper, | 79 |
| abstract_inverted_index.static | 115 |
| abstract_inverted_index.table, | 56 |
| abstract_inverted_index.tables | 117 |
| abstract_inverted_index.words. | 43 |
| abstract_inverted_index.VQ4ALL, | 125 |
| abstract_inverted_index.access. | 76 |
| abstract_inverted_index.achieve | 141 |
| abstract_inverted_index.because | 45 |
| abstract_inverted_index.density | 155 |
| abstract_inverted_index.extract | 159 |
| abstract_inverted_index.forward | 10 |
| abstract_inverted_index.further | 105 |
| abstract_inverted_index.limited | 70 |
| abstract_inverted_index.low-bit | 168 |
| abstract_inverted_index.methods | 20 |
| abstract_inverted_index.network | 7, 15, 50, 191 |
| abstract_inverted_index.propose | 81 |
| abstract_inverted_index.reduces | 98, 106 |
| abstract_inverted_index.results | 175 |
| abstract_inverted_index.sharing | 41 |
| abstract_inverted_index.storing | 114 |
| abstract_inverted_index.various | 137 |
| abstract_inverted_index.$\times$ | 184 |
| abstract_inverted_index.However, | 44 |
| abstract_inverted_index.VQ-based | 127 |
| abstract_inverted_index.accuracy | 188 |
| abstract_inverted_index.achieved | 26 |
| abstract_inverted_index.achieves | 179 |
| abstract_inverted_index.approach | 157 |
| abstract_inverted_index.built-in | 120 |
| abstract_inverted_index.codebook | 89, 162 |
| abstract_inverted_index.frequent | 74 |
| abstract_inverted_index.methods. | 17 |
| abstract_inverted_index.multiple | 91, 190 |
| abstract_inverted_index.networks | 139, 169 |
| abstract_inverted_index.realizes | 33 |
| abstract_inverted_index.success, | 28 |
| abstract_inverted_index.top-down | 59 |
| abstract_inverted_index.updating | 171 |
| abstract_inverted_index.utilizes | 130 |
| abstract_inverted_index.attention | 63 |
| abstract_inverted_index.bottom-up | 83 |
| abstract_inverted_index.codebooks | 102 |
| abstract_inverted_index.codewords | 131 |
| abstract_inverted_index.construct | 166 |
| abstract_inverted_index.different | 167 |
| abstract_inverted_index.efficient | 142 |
| abstract_inverted_index.exceeding | 182 |
| abstract_inverted_index.introduce | 124 |
| abstract_inverted_index.networks, | 93 |
| abstract_inverted_index.resulting | 68 |
| abstract_inverted_index.universal | 88, 161 |
| abstract_inverted_index.especially | 29 |
| abstract_inverted_index.estimation | 156 |
| abstract_inverted_index.preserving | 186 |
| abstract_inverted_index.technology | 31, 61 |
| abstract_inverted_index.underlying | 66 |
| abstract_inverted_index.compression | 24, 36, 60, 71, 180 |
| abstract_inverted_index.demonstrate | 176 |
| abstract_inverted_index.effectively | 97 |
| abstract_inverted_index.lightweight | 14 |
| abstract_inverted_index.traditional | 19, 58 |
| abstract_inverted_index.Experimental | 174 |
| abstract_inverted_index.assignments. | 173 |
| abstract_inverted_index.construction | 135 |
| abstract_inverted_index.highlighting | 193 |
| abstract_inverted_index.requirements | 12 |
| abstract_inverted_index.versatility. | 197 |
| abstract_inverted_index.Specifically, | 122 |
| abstract_inverted_index.effectiveness | 195 |
| abstract_inverted_index.progressively | 165 |
| abstract_inverted_index.architectures, | 192 |
| abstract_inverted_index.commonalities, | 67 |
| abstract_inverted_index.differentiable | 172 |
| abstract_inverted_index.representation | 16 |
| abstract_inverted_index.representations. | 143 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |