VQ4DiT: Efficient Post-Training Vector Quantization for Diffusion Transformers Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2408.17131
The Diffusion Transformers Models (DiTs) have transitioned the network architecture from traditional UNets to transformers, demonstrating exceptional capabilities in image generation. Although DiTs have been widely applied to high-definition video generation tasks, their large parameter size hinders inference on edge devices. Vector quantization (VQ) can decompose model weight into a codebook and assignments, allowing extreme weight quantization and significantly reducing memory usage. In this paper, we propose VQ4DiT, a fast post-training vector quantization method for DiTs. We found that traditional VQ methods calibrate only the codebook without calibrating the assignments. This leads to weight sub-vectors being incorrectly assigned to the same assignment, providing inconsistent gradients to the codebook and resulting in a suboptimal result. To address this challenge, VQ4DiT calculates the candidate assignment set for each weight sub-vector based on Euclidean distance and reconstructs the sub-vector based on the weighted average. Then, using the zero-data and block-wise calibration method, the optimal assignment from the set is efficiently selected while calibrating the codebook. VQ4DiT quantizes a DiT XL/2 model on a single NVIDIA A100 GPU within 20 minutes to 5 hours depending on the different quantization settings. Experiments show that VQ4DiT establishes a new state-of-the-art in model size and performance trade-offs, quantizing weights to 2-bit precision while retaining acceptable image generation quality.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2408.17131
- https://arxiv.org/pdf/2408.17131
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402951436
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402951436Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2408.17131Digital Object Identifier
- Title
-
VQ4DiT: Efficient Post-Training Vector Quantization for Diffusion TransformersWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-30Full publication date if available
- Authors
-
Juncan Deng, Shuaiting Li, Zeyu Wang, Hong Gu, Kedong Xu, Kejie HuangList of authors in order
- Landing page
-
https://arxiv.org/abs/2408.17131Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2408.17131Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2408.17131Direct OA link when available
- Concepts
-
Transformer, Vector quantization, Learning vector quantization, Computer science, Training (meteorology), Artificial intelligence, Electrical engineering, Engineering, Physics, Meteorology, VoltageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402951436 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2408.17131 |
| ids.doi | https://doi.org/10.48550/arxiv.2408.17131 |
| ids.openalex | https://openalex.org/W4402951436 |
| fwci | |
| type | preprint |
| title | VQ4DiT: Efficient Post-Training Vector Quantization for Diffusion Transformers |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9690999984741211 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T10502 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9402999877929688 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Memory and Neural Computing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C66322947 |
| concepts[0].level | 3 |
| concepts[0].score | 0.5082795023918152 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[0].display_name | Transformer |
| concepts[1].id | https://openalex.org/C199833920 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4967966377735138 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q612536 |
| concepts[1].display_name | Vector quantization |
| concepts[2].id | https://openalex.org/C40567965 |
| concepts[2].level | 3 |
| concepts[2].score | 0.448872834444046 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1820283 |
| concepts[2].display_name | Learning vector quantization |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.43774792551994324 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2777211547 |
| concepts[4].level | 2 |
| concepts[4].score | 0.42235642671585083 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[4].display_name | Training (meteorology) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.301446795463562 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C119599485 |
| concepts[6].level | 1 |
| concepts[6].score | 0.21729373931884766 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[6].display_name | Electrical engineering |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.20067757368087769 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.1532842516899109 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C153294291 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[9].display_name | Meteorology |
| concepts[10].id | https://openalex.org/C165801399 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[10].display_name | Voltage |
| keywords[0].id | https://openalex.org/keywords/transformer |
| keywords[0].score | 0.5082795023918152 |
| keywords[0].display_name | Transformer |
| keywords[1].id | https://openalex.org/keywords/vector-quantization |
| keywords[1].score | 0.4967966377735138 |
| keywords[1].display_name | Vector quantization |
| keywords[2].id | https://openalex.org/keywords/learning-vector-quantization |
| keywords[2].score | 0.448872834444046 |
| keywords[2].display_name | Learning vector quantization |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.43774792551994324 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/training |
| keywords[4].score | 0.42235642671585083 |
| keywords[4].display_name | Training (meteorology) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.301446795463562 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/electrical-engineering |
| keywords[6].score | 0.21729373931884766 |
| keywords[6].display_name | Electrical engineering |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.20067757368087769 |
| keywords[7].display_name | Engineering |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.1532842516899109 |
| keywords[8].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2408.17131 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2408.17131 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2408.17131 |
| locations[1].id | doi:10.48550/arxiv.2408.17131 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2408.17131 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5065813707 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0860-4442 |
| authorships[0].author.display_name | Juncan Deng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Deng, Juncan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5114236163 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shuaiting Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Shuaiting |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100379696 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7057-1613 |
| authorships[2].author.display_name | Zeyu Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Zeyu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101434406 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8224-146X |
| authorships[3].author.display_name | Hong Gu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gu, Hong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5111345577 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Kedong Xu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xu, Kedong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101002463 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Kejie Huang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Huang, Kejie |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2408.17131 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-09-29T00:00:00 |
| display_name | VQ4DiT: Efficient Post-Training Vector Quantization for Diffusion Transformers |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9690999984741211 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W2100968651, https://openalex.org/W4243803532, https://openalex.org/W2142248489, https://openalex.org/W2352648934, https://openalex.org/W4230688072, https://openalex.org/W1915693853, https://openalex.org/W1530525041, https://openalex.org/W2378212145, https://openalex.org/W2798892016, https://openalex.org/W2202992072 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2408.17131 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2408.17131 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2408.17131 |
| primary_location.id | pmh:oai:arXiv.org:2408.17131 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2408.17131 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2408.17131 |
| publication_date | 2024-08-30 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.5 | 178 |
| abstract_inverted_index.a | 49, 68, 111, 164, 169, 191 |
| abstract_inverted_index.20 | 175 |
| abstract_inverted_index.In | 62 |
| abstract_inverted_index.To | 114 |
| abstract_inverted_index.VQ | 80 |
| abstract_inverted_index.We | 76 |
| abstract_inverted_index.in | 18, 110, 194 |
| abstract_inverted_index.is | 155 |
| abstract_inverted_index.on | 38, 129, 137, 168, 181 |
| abstract_inverted_index.to | 13, 27, 92, 98, 105, 177, 202 |
| abstract_inverted_index.we | 65 |
| abstract_inverted_index.DiT | 165 |
| abstract_inverted_index.GPU | 173 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 51, 57, 108, 132, 145, 197 |
| abstract_inverted_index.can | 44 |
| abstract_inverted_index.for | 74, 124 |
| abstract_inverted_index.new | 192 |
| abstract_inverted_index.set | 123, 154 |
| abstract_inverted_index.the | 7, 84, 88, 99, 106, 120, 134, 138, 143, 149, 153, 160, 182 |
| abstract_inverted_index.(VQ) | 43 |
| abstract_inverted_index.A100 | 172 |
| abstract_inverted_index.DiTs | 22 |
| abstract_inverted_index.This | 90 |
| abstract_inverted_index.XL/2 | 166 |
| abstract_inverted_index.been | 24 |
| abstract_inverted_index.each | 125 |
| abstract_inverted_index.edge | 39 |
| abstract_inverted_index.fast | 69 |
| abstract_inverted_index.from | 10, 152 |
| abstract_inverted_index.have | 5, 23 |
| abstract_inverted_index.into | 48 |
| abstract_inverted_index.only | 83 |
| abstract_inverted_index.same | 100 |
| abstract_inverted_index.show | 187 |
| abstract_inverted_index.size | 35, 196 |
| abstract_inverted_index.that | 78, 188 |
| abstract_inverted_index.this | 63, 116 |
| abstract_inverted_index.2-bit | 203 |
| abstract_inverted_index.DiTs. | 75 |
| abstract_inverted_index.Then, | 141 |
| abstract_inverted_index.UNets | 12 |
| abstract_inverted_index.based | 128, 136 |
| abstract_inverted_index.being | 95 |
| abstract_inverted_index.found | 77 |
| abstract_inverted_index.hours | 179 |
| abstract_inverted_index.image | 19, 208 |
| abstract_inverted_index.large | 33 |
| abstract_inverted_index.leads | 91 |
| abstract_inverted_index.model | 46, 167, 195 |
| abstract_inverted_index.their | 32 |
| abstract_inverted_index.using | 142 |
| abstract_inverted_index.video | 29 |
| abstract_inverted_index.while | 158, 205 |
| abstract_inverted_index.(DiTs) | 4 |
| abstract_inverted_index.Models | 3 |
| abstract_inverted_index.NVIDIA | 171 |
| abstract_inverted_index.VQ4DiT | 118, 162, 189 |
| abstract_inverted_index.Vector | 41 |
| abstract_inverted_index.memory | 60 |
| abstract_inverted_index.method | 73 |
| abstract_inverted_index.paper, | 64 |
| abstract_inverted_index.single | 170 |
| abstract_inverted_index.tasks, | 31 |
| abstract_inverted_index.usage. | 61 |
| abstract_inverted_index.vector | 71 |
| abstract_inverted_index.weight | 47, 55, 93, 126 |
| abstract_inverted_index.widely | 25 |
| abstract_inverted_index.within | 174 |
| abstract_inverted_index.VQ4DiT, | 67 |
| abstract_inverted_index.address | 115 |
| abstract_inverted_index.applied | 26 |
| abstract_inverted_index.extreme | 54 |
| abstract_inverted_index.hinders | 36 |
| abstract_inverted_index.method, | 148 |
| abstract_inverted_index.methods | 81 |
| abstract_inverted_index.minutes | 176 |
| abstract_inverted_index.network | 8 |
| abstract_inverted_index.optimal | 150 |
| abstract_inverted_index.propose | 66 |
| abstract_inverted_index.result. | 113 |
| abstract_inverted_index.weights | 201 |
| abstract_inverted_index.without | 86 |
| abstract_inverted_index.Although | 21 |
| abstract_inverted_index.allowing | 53 |
| abstract_inverted_index.assigned | 97 |
| abstract_inverted_index.average. | 140 |
| abstract_inverted_index.codebook | 50, 85, 107 |
| abstract_inverted_index.devices. | 40 |
| abstract_inverted_index.distance | 131 |
| abstract_inverted_index.quality. | 210 |
| abstract_inverted_index.reducing | 59 |
| abstract_inverted_index.selected | 157 |
| abstract_inverted_index.weighted | 139 |
| abstract_inverted_index.Diffusion | 1 |
| abstract_inverted_index.Euclidean | 130 |
| abstract_inverted_index.calibrate | 82 |
| abstract_inverted_index.candidate | 121 |
| abstract_inverted_index.codebook. | 161 |
| abstract_inverted_index.decompose | 45 |
| abstract_inverted_index.depending | 180 |
| abstract_inverted_index.different | 183 |
| abstract_inverted_index.gradients | 104 |
| abstract_inverted_index.inference | 37 |
| abstract_inverted_index.parameter | 34 |
| abstract_inverted_index.precision | 204 |
| abstract_inverted_index.providing | 102 |
| abstract_inverted_index.quantizes | 163 |
| abstract_inverted_index.resulting | 109 |
| abstract_inverted_index.retaining | 206 |
| abstract_inverted_index.settings. | 185 |
| abstract_inverted_index.zero-data | 144 |
| abstract_inverted_index.acceptable | 207 |
| abstract_inverted_index.assignment | 122, 151 |
| abstract_inverted_index.block-wise | 146 |
| abstract_inverted_index.calculates | 119 |
| abstract_inverted_index.challenge, | 117 |
| abstract_inverted_index.generation | 30, 209 |
| abstract_inverted_index.quantizing | 200 |
| abstract_inverted_index.sub-vector | 127, 135 |
| abstract_inverted_index.suboptimal | 112 |
| abstract_inverted_index.Experiments | 186 |
| abstract_inverted_index.assignment, | 101 |
| abstract_inverted_index.calibrating | 87, 159 |
| abstract_inverted_index.calibration | 147 |
| abstract_inverted_index.efficiently | 156 |
| abstract_inverted_index.establishes | 190 |
| abstract_inverted_index.exceptional | 16 |
| abstract_inverted_index.generation. | 20 |
| abstract_inverted_index.incorrectly | 96 |
| abstract_inverted_index.performance | 198 |
| abstract_inverted_index.sub-vectors | 94 |
| abstract_inverted_index.trade-offs, | 199 |
| abstract_inverted_index.traditional | 11, 79 |
| abstract_inverted_index.Transformers | 2 |
| abstract_inverted_index.architecture | 9 |
| abstract_inverted_index.assignments, | 52 |
| abstract_inverted_index.assignments. | 89 |
| abstract_inverted_index.capabilities | 17 |
| abstract_inverted_index.inconsistent | 103 |
| abstract_inverted_index.quantization | 42, 56, 72, 184 |
| abstract_inverted_index.reconstructs | 133 |
| abstract_inverted_index.transitioned | 6 |
| abstract_inverted_index.demonstrating | 15 |
| abstract_inverted_index.post-training | 70 |
| abstract_inverted_index.significantly | 58 |
| abstract_inverted_index.transformers, | 14 |
| abstract_inverted_index.high-definition | 28 |
| abstract_inverted_index.state-of-the-art | 193 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |