VQA4CIR: Boosting Composed Image Retrieval with Visual Question Answering Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2312.12273
Albeit progress has been made in Composed Image Retrieval (CIR), we empirically find that a certain percentage of failure retrieval results are not consistent with their relative captions. To address this issue, this work provides a Visual Question Answering (VQA) perspective to boost the performance of CIR. The resulting VQA4CIR is a post-processing approach and can be directly plugged into existing CIR methods. Given the top-C retrieved images by a CIR method, VQA4CIR aims to decrease the adverse effect of the failure retrieval results being inconsistent with the relative caption. To find the retrieved images inconsistent with the relative caption, we resort to the "QA generation to VQA" self-verification pipeline. For QA generation, we suggest fine-tuning LLM (e.g., LLaMA) to generate several pairs of questions and answers from each relative caption. We then fine-tune LVLM (e.g., LLaVA) to obtain the VQA model. By feeding the retrieved image and question to the VQA model, one can find the images inconsistent with relative caption when the answer by VQA is inconsistent with the answer in the QA pair. Consequently, the CIR performance can be boosted by modifying the ranks of inconsistently retrieved images. Experimental results show that our proposed method outperforms state-of-the-art CIR methods on the CIRR and Fashion-IQ datasets.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2312.12273
- https://arxiv.org/pdf/2312.12273
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390050357
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390050357Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2312.12273Digital Object Identifier
- Title
-
VQA4CIR: Boosting Composed Image Retrieval with Visual Question AnsweringWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-19Full publication date if available
- Authors
-
Chun-Mei Feng, Yang Bai, Tao Luo, Zhen Li, Salman Khan, Wangmeng Zuo, Xinxing Xu, Rick Siow Mong Goh, Yong LiuList of authors in order
- Landing page
-
https://arxiv.org/abs/2312.12273Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2312.12273Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2312.12273Direct OA link when available
- Concepts
-
Question answering, Computer science, Boosting (machine learning), Pipeline (software), Information retrieval, Perspective (graphical), Artificial intelligence, Image retrieval, Image (mathematics), Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390050357 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2312.12273 |
| ids.doi | https://doi.org/10.48550/arxiv.2312.12273 |
| ids.openalex | https://openalex.org/W4390050357 |
| fwci | |
| type | preprint |
| title | VQA4CIR: Boosting Composed Image Retrieval with Visual Question Answering |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9929999709129333 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C44291984 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8390860557556152 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1074173 |
| concepts[0].display_name | Question answering |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7591571807861328 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C46686674 |
| concepts[2].level | 2 |
| concepts[2].score | 0.711800754070282 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[2].display_name | Boosting (machine learning) |
| concepts[3].id | https://openalex.org/C43521106 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6566468477249146 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[3].display_name | Pipeline (software) |
| concepts[4].id | https://openalex.org/C23123220 |
| concepts[4].level | 1 |
| concepts[4].score | 0.49644309282302856 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[4].display_name | Information retrieval |
| concepts[5].id | https://openalex.org/C12713177 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4867737293243408 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1900281 |
| concepts[5].display_name | Perspective (graphical) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.47581249475479126 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C1667742 |
| concepts[7].level | 3 |
| concepts[7].score | 0.43929582834243774 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q10927554 |
| concepts[7].display_name | Image retrieval |
| concepts[8].id | https://openalex.org/C115961682 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4237244129180908 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[8].display_name | Image (mathematics) |
| concepts[9].id | https://openalex.org/C199360897 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[9].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/question-answering |
| keywords[0].score | 0.8390860557556152 |
| keywords[0].display_name | Question answering |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7591571807861328 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/boosting |
| keywords[2].score | 0.711800754070282 |
| keywords[2].display_name | Boosting (machine learning) |
| keywords[3].id | https://openalex.org/keywords/pipeline |
| keywords[3].score | 0.6566468477249146 |
| keywords[3].display_name | Pipeline (software) |
| keywords[4].id | https://openalex.org/keywords/information-retrieval |
| keywords[4].score | 0.49644309282302856 |
| keywords[4].display_name | Information retrieval |
| keywords[5].id | https://openalex.org/keywords/perspective |
| keywords[5].score | 0.4867737293243408 |
| keywords[5].display_name | Perspective (graphical) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.47581249475479126 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/image-retrieval |
| keywords[7].score | 0.43929582834243774 |
| keywords[7].display_name | Image retrieval |
| keywords[8].id | https://openalex.org/keywords/image |
| keywords[8].score | 0.4237244129180908 |
| keywords[8].display_name | Image (mathematics) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2312.12273 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2312.12273 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2312.12273 |
| locations[1].id | doi:10.48550/arxiv.2312.12273 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2312.12273 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5049444898 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3025-8964 |
| authorships[0].author.display_name | Chun-Mei Feng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Feng, Chun-Mei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100762646 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9092-3890 |
| authorships[1].author.display_name | Yang Bai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bai, Yang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101630043 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3415-3676 |
| authorships[2].author.display_name | Tao Luo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Luo, Tao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100332655 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1166-9482 |
| authorships[3].author.display_name | Zhen Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Li, Zhen |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5058897625 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9706-4005 |
| authorships[4].author.display_name | Salman Khan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Khan, Salman |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100636655 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3330-783X |
| authorships[5].author.display_name | Wangmeng Zuo |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zuo, Wangmeng |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5067953198 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1449-3072 |
| authorships[6].author.display_name | Xinxing Xu |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Xu, Xinxing |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5001599295 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-9116-1595 |
| authorships[7].author.display_name | Rick Siow Mong Goh |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Goh, Rick Siow Mong |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100724297 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-4822-8939 |
| authorships[8].author.display_name | Yong Liu |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Liu, Yong |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2312.12273 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | VQA4CIR: Boosting Composed Image Retrieval with Visual Question Answering |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W2125652721, https://openalex.org/W1540371141, https://openalex.org/W4231274751, https://openalex.org/W2384605597, https://openalex.org/W1549363203, https://openalex.org/W2154063878, https://openalex.org/W2556012038, https://openalex.org/W1489772951, https://openalex.org/W1538046993, https://openalex.org/W4225922023 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2312.12273 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2312.12273 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2312.12273 |
| primary_location.id | pmh:oai:arXiv.org:2312.12273 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2312.12273 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2312.12273 |
| publication_date | 2023-12-19 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 14, 35, 51, 69 |
| abstract_inverted_index.By | 142 |
| abstract_inverted_index.QA | 111, 174 |
| abstract_inverted_index.To | 28, 90 |
| abstract_inverted_index.We | 131 |
| abstract_inverted_index.be | 56, 181 |
| abstract_inverted_index.by | 68, 165, 183 |
| abstract_inverted_index.in | 5, 172 |
| abstract_inverted_index.is | 50, 167 |
| abstract_inverted_index.of | 17, 45, 79, 123, 187 |
| abstract_inverted_index.on | 202 |
| abstract_inverted_index.to | 41, 74, 102, 106, 119, 137, 149 |
| abstract_inverted_index.we | 10, 100, 113 |
| abstract_inverted_index."QA | 104 |
| abstract_inverted_index.CIR | 61, 70, 178, 200 |
| abstract_inverted_index.For | 110 |
| abstract_inverted_index.LLM | 116 |
| abstract_inverted_index.The | 47 |
| abstract_inverted_index.VQA | 140, 151, 166 |
| abstract_inverted_index.and | 54, 125, 147, 205 |
| abstract_inverted_index.are | 21 |
| abstract_inverted_index.can | 55, 154, 180 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.not | 22 |
| abstract_inverted_index.one | 153 |
| abstract_inverted_index.our | 195 |
| abstract_inverted_index.the | 43, 64, 76, 80, 87, 92, 97, 103, 139, 144, 150, 156, 163, 170, 173, 177, 185, 203 |
| abstract_inverted_index.CIR. | 46 |
| abstract_inverted_index.CIRR | 204 |
| abstract_inverted_index.LVLM | 134 |
| abstract_inverted_index.VQA" | 107 |
| abstract_inverted_index.aims | 73 |
| abstract_inverted_index.been | 3 |
| abstract_inverted_index.each | 128 |
| abstract_inverted_index.find | 12, 91, 155 |
| abstract_inverted_index.from | 127 |
| abstract_inverted_index.into | 59 |
| abstract_inverted_index.made | 4 |
| abstract_inverted_index.show | 193 |
| abstract_inverted_index.that | 13, 194 |
| abstract_inverted_index.then | 132 |
| abstract_inverted_index.this | 30, 32 |
| abstract_inverted_index.when | 162 |
| abstract_inverted_index.with | 24, 86, 96, 159, 169 |
| abstract_inverted_index.work | 33 |
| abstract_inverted_index.(VQA) | 39 |
| abstract_inverted_index.Given | 63 |
| abstract_inverted_index.Image | 7 |
| abstract_inverted_index.being | 84 |
| abstract_inverted_index.boost | 42 |
| abstract_inverted_index.image | 146 |
| abstract_inverted_index.pair. | 175 |
| abstract_inverted_index.pairs | 122 |
| abstract_inverted_index.ranks | 186 |
| abstract_inverted_index.their | 25 |
| abstract_inverted_index.top-C | 65 |
| abstract_inverted_index.(CIR), | 9 |
| abstract_inverted_index.(e.g., | 117, 135 |
| abstract_inverted_index.Albeit | 0 |
| abstract_inverted_index.LLaMA) | 118 |
| abstract_inverted_index.LLaVA) | 136 |
| abstract_inverted_index.Visual | 36 |
| abstract_inverted_index.answer | 164, 171 |
| abstract_inverted_index.effect | 78 |
| abstract_inverted_index.images | 67, 94, 157 |
| abstract_inverted_index.issue, | 31 |
| abstract_inverted_index.method | 197 |
| abstract_inverted_index.model, | 152 |
| abstract_inverted_index.model. | 141 |
| abstract_inverted_index.obtain | 138 |
| abstract_inverted_index.resort | 101 |
| abstract_inverted_index.VQA4CIR | 49, 72 |
| abstract_inverted_index.address | 29 |
| abstract_inverted_index.adverse | 77 |
| abstract_inverted_index.answers | 126 |
| abstract_inverted_index.boosted | 182 |
| abstract_inverted_index.caption | 161 |
| abstract_inverted_index.certain | 15 |
| abstract_inverted_index.failure | 18, 81 |
| abstract_inverted_index.feeding | 143 |
| abstract_inverted_index.images. | 190 |
| abstract_inverted_index.method, | 71 |
| abstract_inverted_index.methods | 201 |
| abstract_inverted_index.plugged | 58 |
| abstract_inverted_index.results | 20, 83, 192 |
| abstract_inverted_index.several | 121 |
| abstract_inverted_index.suggest | 114 |
| abstract_inverted_index.Composed | 6 |
| abstract_inverted_index.Question | 37 |
| abstract_inverted_index.approach | 53 |
| abstract_inverted_index.caption, | 99 |
| abstract_inverted_index.caption. | 89, 130 |
| abstract_inverted_index.decrease | 75 |
| abstract_inverted_index.directly | 57 |
| abstract_inverted_index.existing | 60 |
| abstract_inverted_index.generate | 120 |
| abstract_inverted_index.methods. | 62 |
| abstract_inverted_index.progress | 1 |
| abstract_inverted_index.proposed | 196 |
| abstract_inverted_index.provides | 34 |
| abstract_inverted_index.question | 148 |
| abstract_inverted_index.relative | 26, 88, 98, 129, 160 |
| abstract_inverted_index.Answering | 38 |
| abstract_inverted_index.Retrieval | 8 |
| abstract_inverted_index.captions. | 27 |
| abstract_inverted_index.datasets. | 207 |
| abstract_inverted_index.fine-tune | 133 |
| abstract_inverted_index.modifying | 184 |
| abstract_inverted_index.pipeline. | 109 |
| abstract_inverted_index.questions | 124 |
| abstract_inverted_index.resulting | 48 |
| abstract_inverted_index.retrieval | 19, 82 |
| abstract_inverted_index.retrieved | 66, 93, 145, 189 |
| abstract_inverted_index.Fashion-IQ | 206 |
| abstract_inverted_index.consistent | 23 |
| abstract_inverted_index.generation | 105 |
| abstract_inverted_index.percentage | 16 |
| abstract_inverted_index.empirically | 11 |
| abstract_inverted_index.fine-tuning | 115 |
| abstract_inverted_index.generation, | 112 |
| abstract_inverted_index.outperforms | 198 |
| abstract_inverted_index.performance | 44, 179 |
| abstract_inverted_index.perspective | 40 |
| abstract_inverted_index.Experimental | 191 |
| abstract_inverted_index.inconsistent | 85, 95, 158, 168 |
| abstract_inverted_index.Consequently, | 176 |
| abstract_inverted_index.inconsistently | 188 |
| abstract_inverted_index.post-processing | 52 |
| abstract_inverted_index.state-of-the-art | 199 |
| abstract_inverted_index.self-verification | 108 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |