VulD-SG: Enhancing code vulnerability detection via combining deep sequence and graph model Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-4893837/v1
Thriving and widespread use of the open-source software community makes software vulnerabilities spread a lot, which brings serious challenges to the system security. Recently, a number of vulnerability detection methods based on deep learning have been proposed to help engineers analyze and patch vulnerabilities efficiently. However, these existing approaches still suffer from limitations in extracting rich features from vulnerability code. Aiming at the above problems, we propose VulD-SG, a dual-channel software code vulnerability detection method based on deep sequence and graph model. VulD-SG enhances the semantic, syntactic and structural features extraction ability of the source code by introducing the deep sequence-based and graph-based vulnerability feature extraction module. To address the problem of the coarse detection granularity in the traditional methods, VulD-SG slices code statements into subtokens with a new decomposition algorithm to capture the detailed vulnerability information. Meanwhile, Transformer-style encoder is utilized in graph-based vulnerability feature extraction module to aggregate program dependency graph (PDG) nodes to learn the long-range dependence of cross-function code effectively. Finally, we build a fusion model to merge the training parameters and achieve fine-grained prediction results. The experiments result show that Acc, F1, and Recall metrics were improved by 2.6\%~27\%, 2\%~29.2\%, and 1\%~30.25\% respectively on five different vulnerability datasets compared with seven vulnerability detection models based on deep learning.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-4893837/v1
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402741916
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402741916Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-4893837/v1Digital Object Identifier
- Title
-
VulD-SG: Enhancing code vulnerability detection via combining deep sequence and graph modelWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-23Full publication date if available
- Authors
-
Xuejun Zhang, Bo Zhou, Zhuo Chen, Meifeng Guo, Xiaogang Du, Xiaohong Jia, Wanrong BaiList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-4893837/v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.21203/rs.3.rs-4893837/v1Direct OA link when available
- Concepts
-
Code (set theory), Sequence (biology), Computer science, Vulnerability (computing), Graph, Theoretical computer science, Biology, Programming language, Computer security, Genetics, Set (abstract data type)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402741916 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-4893837/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-4893837/v1 |
| ids.openalex | https://openalex.org/W4402741916 |
| fwci | 0.0 |
| type | preprint |
| title | VulD-SG: Enhancing code vulnerability detection via combining deep sequence and graph model |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11241 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9937999844551086 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Advanced Malware Detection Techniques |
| topics[1].id | https://openalex.org/T10260 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9868000149726868 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Software Engineering Research |
| topics[2].id | https://openalex.org/T12479 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9782000184059143 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Web Application Security Vulnerabilities |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776760102 |
| concepts[0].level | 3 |
| concepts[0].score | 0.5741103291511536 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[0].display_name | Code (set theory) |
| concepts[1].id | https://openalex.org/C2778112365 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5684740543365479 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[1].display_name | Sequence (biology) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5602984428405762 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C95713431 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5487369894981384 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q631425 |
| concepts[3].display_name | Vulnerability (computing) |
| concepts[4].id | https://openalex.org/C132525143 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46733272075653076 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[4].display_name | Graph |
| concepts[5].id | https://openalex.org/C80444323 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3003394305706024 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[5].display_name | Theoretical computer science |
| concepts[6].id | https://openalex.org/C86803240 |
| concepts[6].level | 0 |
| concepts[6].score | 0.21010857820510864 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[6].display_name | Biology |
| concepts[7].id | https://openalex.org/C199360897 |
| concepts[7].level | 1 |
| concepts[7].score | 0.17300021648406982 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[7].display_name | Programming language |
| concepts[8].id | https://openalex.org/C38652104 |
| concepts[8].level | 1 |
| concepts[8].score | 0.12163868546485901 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[8].display_name | Computer security |
| concepts[9].id | https://openalex.org/C54355233 |
| concepts[9].level | 1 |
| concepts[9].score | 0.08814772963523865 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[9].display_name | Genetics |
| concepts[10].id | https://openalex.org/C177264268 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[10].display_name | Set (abstract data type) |
| keywords[0].id | https://openalex.org/keywords/code |
| keywords[0].score | 0.5741103291511536 |
| keywords[0].display_name | Code (set theory) |
| keywords[1].id | https://openalex.org/keywords/sequence |
| keywords[1].score | 0.5684740543365479 |
| keywords[1].display_name | Sequence (biology) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5602984428405762 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/vulnerability |
| keywords[3].score | 0.5487369894981384 |
| keywords[3].display_name | Vulnerability (computing) |
| keywords[4].id | https://openalex.org/keywords/graph |
| keywords[4].score | 0.46733272075653076 |
| keywords[4].display_name | Graph |
| keywords[5].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[5].score | 0.3003394305706024 |
| keywords[5].display_name | Theoretical computer science |
| keywords[6].id | https://openalex.org/keywords/biology |
| keywords[6].score | 0.21010857820510864 |
| keywords[6].display_name | Biology |
| keywords[7].id | https://openalex.org/keywords/programming-language |
| keywords[7].score | 0.17300021648406982 |
| keywords[7].display_name | Programming language |
| keywords[8].id | https://openalex.org/keywords/computer-security |
| keywords[8].score | 0.12163868546485901 |
| keywords[8].display_name | Computer security |
| keywords[9].id | https://openalex.org/keywords/genetics |
| keywords[9].score | 0.08814772963523865 |
| keywords[9].display_name | Genetics |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-4893837/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-4893837/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100336500 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7689-4686 |
| authorships[0].author.display_name | Xuejun Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3133134087 |
| authorships[0].affiliations[0].raw_affiliation_string | Lanzhou Jiaotong University |
| authorships[0].institutions[0].id | https://openalex.org/I3133134087 |
| authorships[0].institutions[0].ror | https://ror.org/03144pv92 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I3133134087 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Lanzhou Jiaotong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xuejun Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Lanzhou Jiaotong University |
| authorships[1].author.id | https://openalex.org/A5013759547 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6389-9509 |
| authorships[1].author.display_name | Bo Zhou |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3133134087 |
| authorships[1].affiliations[0].raw_affiliation_string | Lanzhou Jiaotong University |
| authorships[1].institutions[0].id | https://openalex.org/I3133134087 |
| authorships[1].institutions[0].ror | https://ror.org/03144pv92 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3133134087 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Lanzhou Jiaotong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bo Zhou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Lanzhou Jiaotong University |
| authorships[2].author.id | https://openalex.org/A5106557560 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8483-1578 |
| authorships[2].author.display_name | Zhuo Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3133134087 |
| authorships[2].affiliations[0].raw_affiliation_string | Lanzhou Jiaotong University |
| authorships[2].institutions[0].id | https://openalex.org/I3133134087 |
| authorships[2].institutions[0].ror | https://ror.org/03144pv92 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I3133134087 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Lanzhou Jiaotong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhuo Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Lanzhou Jiaotong University |
| authorships[3].author.id | https://openalex.org/A5101521462 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9068-3973 |
| authorships[3].author.display_name | Meifeng Guo |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I3133134087 |
| authorships[3].affiliations[0].raw_affiliation_string | Lanzhou Jiaotong University |
| authorships[3].institutions[0].id | https://openalex.org/I3133134087 |
| authorships[3].institutions[0].ror | https://ror.org/03144pv92 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I3133134087 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Lanzhou Jiaotong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Meifeng Guo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Lanzhou Jiaotong University |
| authorships[4].author.id | https://openalex.org/A5056383449 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0612-6064 |
| authorships[4].author.display_name | Xiaogang Du |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I51622183 |
| authorships[4].affiliations[0].raw_affiliation_string | Shaanxi University of Science and Technology |
| authorships[4].institutions[0].id | https://openalex.org/I51622183 |
| authorships[4].institutions[0].ror | https://ror.org/034t3zs45 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I51622183 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shaanxi University of Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xiaogang Du |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Shaanxi University of Science and Technology |
| authorships[5].author.id | https://openalex.org/A5075570681 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6206-3216 |
| authorships[5].author.display_name | Xiaohong Jia |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I3133134087 |
| authorships[5].affiliations[0].raw_affiliation_string | Lanzhou Jiaotong University |
| authorships[5].institutions[0].id | https://openalex.org/I3133134087 |
| authorships[5].institutions[0].ror | https://ror.org/03144pv92 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I3133134087 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Lanzhou Jiaotong University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xiaohong Jia |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Lanzhou Jiaotong University |
| authorships[6].author.id | https://openalex.org/A5080900783 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Wanrong Bai |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1335486098 |
| authorships[6].affiliations[0].raw_affiliation_string | State Grid Gansu Electric Power Research Institute |
| authorships[6].institutions[0].id | https://openalex.org/I1335486098 |
| authorships[6].institutions[0].ror | https://ror.org/02dqztz06 |
| authorships[6].institutions[0].type | nonprofit |
| authorships[6].institutions[0].lineage | https://openalex.org/I1335486098 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Electric Power Research Institute |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Wanrong Bai |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | State Grid Gansu Electric Power Research Institute |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.21203/rs.3.rs-4893837/v1 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | VulD-SG: Enhancing code vulnerability detection via combining deep sequence and graph model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11241 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9937999844551086 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Advanced Malware Detection Techniques |
| related_works | https://openalex.org/W2095999892, https://openalex.org/W2018764758, https://openalex.org/W2383689843, https://openalex.org/W1550668881, https://openalex.org/W617913288, https://openalex.org/W2319323865, https://openalex.org/W2951745010, https://openalex.org/W2347958299, https://openalex.org/W2963125730, https://openalex.org/W2348534359 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-4893837/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-4893837/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-4893837/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-4893837/v1 |
| publication_date | 2024-09-23 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 14, 25, 69, 128, 168 |
| abstract_inverted_index.To | 108 |
| abstract_inverted_index.at | 62 |
| abstract_inverted_index.by | 97, 193 |
| abstract_inverted_index.in | 54, 117, 143 |
| abstract_inverted_index.is | 141 |
| abstract_inverted_index.of | 5, 27, 93, 112, 161 |
| abstract_inverted_index.on | 32, 77, 199, 211 |
| abstract_inverted_index.to | 20, 38, 132, 149, 156, 171 |
| abstract_inverted_index.we | 66, 166 |
| abstract_inverted_index.F1, | 187 |
| abstract_inverted_index.The | 181 |
| abstract_inverted_index.and | 2, 42, 80, 88, 102, 176, 188, 196 |
| abstract_inverted_index.new | 129 |
| abstract_inverted_index.the | 6, 21, 63, 85, 94, 99, 110, 113, 118, 134, 158, 173 |
| abstract_inverted_index.use | 4 |
| abstract_inverted_index.Acc, | 186 |
| abstract_inverted_index.been | 36 |
| abstract_inverted_index.code | 72, 96, 123, 163 |
| abstract_inverted_index.deep | 33, 78, 100, 212 |
| abstract_inverted_index.five | 200 |
| abstract_inverted_index.from | 52, 58 |
| abstract_inverted_index.have | 35 |
| abstract_inverted_index.help | 39 |
| abstract_inverted_index.into | 125 |
| abstract_inverted_index.lot, | 15 |
| abstract_inverted_index.rich | 56 |
| abstract_inverted_index.show | 184 |
| abstract_inverted_index.that | 185 |
| abstract_inverted_index.were | 191 |
| abstract_inverted_index.with | 127, 205 |
| abstract_inverted_index.(PDG) | 154 |
| abstract_inverted_index.above | 64 |
| abstract_inverted_index.based | 31, 76, 210 |
| abstract_inverted_index.build | 167 |
| abstract_inverted_index.code. | 60 |
| abstract_inverted_index.graph | 81, 153 |
| abstract_inverted_index.learn | 157 |
| abstract_inverted_index.makes | 10 |
| abstract_inverted_index.merge | 172 |
| abstract_inverted_index.model | 170 |
| abstract_inverted_index.nodes | 155 |
| abstract_inverted_index.patch | 43 |
| abstract_inverted_index.seven | 206 |
| abstract_inverted_index.still | 50 |
| abstract_inverted_index.these | 47 |
| abstract_inverted_index.which | 16 |
| abstract_inverted_index.Aiming | 61 |
| abstract_inverted_index.Recall | 189 |
| abstract_inverted_index.brings | 17 |
| abstract_inverted_index.coarse | 114 |
| abstract_inverted_index.fusion | 169 |
| abstract_inverted_index.method | 75 |
| abstract_inverted_index.model. | 82 |
| abstract_inverted_index.models | 209 |
| abstract_inverted_index.module | 148 |
| abstract_inverted_index.number | 26 |
| abstract_inverted_index.result | 183 |
| abstract_inverted_index.slices | 122 |
| abstract_inverted_index.source | 95 |
| abstract_inverted_index.spread | 13 |
| abstract_inverted_index.suffer | 51 |
| abstract_inverted_index.system | 22 |
| abstract_inverted_index.VulD-SG | 83, 121 |
| abstract_inverted_index.ability | 92 |
| abstract_inverted_index.achieve | 177 |
| abstract_inverted_index.address | 109 |
| abstract_inverted_index.analyze | 41 |
| abstract_inverted_index.capture | 133 |
| abstract_inverted_index.encoder | 140 |
| abstract_inverted_index.feature | 105, 146 |
| abstract_inverted_index.methods | 30 |
| abstract_inverted_index.metrics | 190 |
| abstract_inverted_index.module. | 107 |
| abstract_inverted_index.problem | 111 |
| abstract_inverted_index.program | 151 |
| abstract_inverted_index.propose | 67 |
| abstract_inverted_index.serious | 18 |
| abstract_inverted_index.Finally, | 165 |
| abstract_inverted_index.However, | 46 |
| abstract_inverted_index.Thriving | 1 |
| abstract_inverted_index.VulD-SG, | 68 |
| abstract_inverted_index.compared | 204 |
| abstract_inverted_index.datasets | 203 |
| abstract_inverted_index.detailed | 135 |
| abstract_inverted_index.enhances | 84 |
| abstract_inverted_index.existing | 48 |
| abstract_inverted_index.features | 57, 90 |
| abstract_inverted_index.improved | 192 |
| abstract_inverted_index.learning | 34 |
| abstract_inverted_index.methods, | 120 |
| abstract_inverted_index.proposed | 37 |
| abstract_inverted_index.results. | 180 |
| abstract_inverted_index.sequence | 79 |
| abstract_inverted_index.software | 8, 11, 71 |
| abstract_inverted_index.training | 174 |
| abstract_inverted_index.utilized | 142 |
| abstract_inverted_index.Recently, | 24 |
| abstract_inverted_index.aggregate | 150 |
| abstract_inverted_index.algorithm | 131 |
| abstract_inverted_index.community | 9 |
| abstract_inverted_index.detection | 29, 74, 115, 208 |
| abstract_inverted_index.different | 201 |
| abstract_inverted_index.engineers | 40 |
| abstract_inverted_index.learning. | 213 |
| abstract_inverted_index.problems, | 65 |
| abstract_inverted_index.security. | 23 |
| abstract_inverted_index.semantic, | 86 |
| abstract_inverted_index.subtokens | 126 |
| abstract_inverted_index.syntactic | 87 |
| abstract_inverted_index.Meanwhile, | 138 |
| abstract_inverted_index.approaches | 49 |
| abstract_inverted_index.challenges | 19 |
| abstract_inverted_index.dependence | 160 |
| abstract_inverted_index.dependency | 152 |
| abstract_inverted_index.extracting | 55 |
| abstract_inverted_index.extraction | 91, 106, 147 |
| abstract_inverted_index.long-range | 159 |
| abstract_inverted_index.parameters | 175 |
| abstract_inverted_index.prediction | 179 |
| abstract_inverted_index.statements | 124 |
| abstract_inverted_index.structural | 89 |
| abstract_inverted_index.widespread | 3 |
| abstract_inverted_index.1\%~30.25\% | 197 |
| abstract_inverted_index.2.6\%~27\%, | 194 |
| abstract_inverted_index.2\%~29.2\%, | 195 |
| abstract_inverted_index.experiments | 182 |
| abstract_inverted_index.granularity | 116 |
| abstract_inverted_index.graph-based | 103, 144 |
| abstract_inverted_index.introducing | 98 |
| abstract_inverted_index.limitations | 53 |
| abstract_inverted_index.open-source | 7 |
| abstract_inverted_index.traditional | 119 |
| abstract_inverted_index.dual-channel | 70 |
| abstract_inverted_index.effectively. | 164 |
| abstract_inverted_index.efficiently. | 45 |
| abstract_inverted_index.fine-grained | 178 |
| abstract_inverted_index.information. | 137 |
| abstract_inverted_index.respectively | 198 |
| abstract_inverted_index.decomposition | 130 |
| abstract_inverted_index.vulnerability | 28, 59, 73, 104, 136, 145, 202, 207 |
| abstract_inverted_index.cross-function | 162 |
| abstract_inverted_index.sequence-based | 101 |
| abstract_inverted_index.vulnerabilities | 12, 44 |
| abstract_inverted_index.Transformer-style | 139 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.21188099 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |