Wafer Defect Root Cause Analysis with Partial Trajectory Regression DM: Big Data Management and Machine Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/asmc64512.2025.11010733
Identifying upstream processes responsible for wafer defects is challenging due to the combinatorial nature of process flows and the inherent variability in processing routes, which arises from factors such as rework operations and random process waiting times. This paper presents a novel framework for wafer defect root cause analysis, called Partial Trajectory Regression (PTR). The proposed framework is carefully designed to address the limitations of conventional vector-based regression models, particularly in handling variable-length processing routes that span a large number of heterogeneous physical processes. To compute the attribution score of each process given a detected high defect density on a specific wafer, we propose a new algorithm that compares two counterfactual outcomes derived from partial process trajectories. This is enabled by new representation learning methods, proc2vec and route2vec. We demonstrate the effectiveness of the proposed framework using real wafer history data from the NY CREATES fab in Albany.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/asmc64512.2025.11010733
- OA Status
- green
- Cited By
- 1
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410771619
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410771619Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/asmc64512.2025.11010733Digital Object Identifier
- Title
-
Wafer Defect Root Cause Analysis with Partial Trajectory Regression DM: Big Data Management and Machine LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-05Full publication date if available
- Authors
-
Kohei Miyaguchi, Masao Joko, Rebekah Sheraw, Tsuyoshi IdéList of authors in order
- Landing page
-
https://doi.org/10.1109/asmc64512.2025.11010733Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.20357Direct OA link when available
- Concepts
-
Root cause analysis, Wafer, Trajectory, Big data, Root cause, Regression analysis, Computer science, Wafer fabrication, Root (linguistics), Regression, Artificial intelligence, Reliability engineering, Data mining, Statistics, Machine learning, Engineering, Mathematics, Electrical engineering, Physics, Linguistics, Philosophy, AstronomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410771619 |
|---|---|
| doi | https://doi.org/10.1109/asmc64512.2025.11010733 |
| ids.doi | https://doi.org/10.1109/asmc64512.2025.11010733 |
| ids.openalex | https://openalex.org/W4410771619 |
| fwci | 3.61023173 |
| type | article |
| title | Wafer Defect Root Cause Analysis with Partial Trajectory Regression DM: Big Data Management and Machine Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 6 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.996999979019165 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T14117 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9846000075340271 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Integrated Circuits and Semiconductor Failure Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C130963320 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8172672986984253 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1401207 |
| concepts[0].display_name | Root cause analysis |
| concepts[1].id | https://openalex.org/C160671074 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6550852060317993 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q267131 |
| concepts[1].display_name | Wafer |
| concepts[2].id | https://openalex.org/C13662910 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6090401411056519 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q193139 |
| concepts[2].display_name | Trajectory |
| concepts[3].id | https://openalex.org/C75684735 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5963796377182007 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[3].display_name | Big data |
| concepts[4].id | https://openalex.org/C84945661 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5655946731567383 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7366567 |
| concepts[4].display_name | Root cause |
| concepts[5].id | https://openalex.org/C152877465 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5343441367149353 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[5].display_name | Regression analysis |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.512537956237793 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C35750839 |
| concepts[7].level | 3 |
| concepts[7].score | 0.48506417870521545 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7959421 |
| concepts[7].display_name | Wafer fabrication |
| concepts[8].id | https://openalex.org/C171078966 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4729974865913391 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q111029 |
| concepts[8].display_name | Root (linguistics) |
| concepts[9].id | https://openalex.org/C83546350 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4505607485771179 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[9].display_name | Regression |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.399586945772171 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C200601418 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3802448511123657 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2193887 |
| concepts[11].display_name | Reliability engineering |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3768613934516907 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.2911117374897003 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.28357988595962524 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.27815455198287964 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.18379870057106018 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C119599485 |
| concepts[17].level | 1 |
| concepts[17].score | 0.13797861337661743 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[17].display_name | Electrical engineering |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.09363585710525513 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| concepts[19].id | https://openalex.org/C41895202 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[19].display_name | Linguistics |
| concepts[20].id | https://openalex.org/C138885662 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[20].display_name | Philosophy |
| concepts[21].id | https://openalex.org/C1276947 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[21].display_name | Astronomy |
| keywords[0].id | https://openalex.org/keywords/root-cause-analysis |
| keywords[0].score | 0.8172672986984253 |
| keywords[0].display_name | Root cause analysis |
| keywords[1].id | https://openalex.org/keywords/wafer |
| keywords[1].score | 0.6550852060317993 |
| keywords[1].display_name | Wafer |
| keywords[2].id | https://openalex.org/keywords/trajectory |
| keywords[2].score | 0.6090401411056519 |
| keywords[2].display_name | Trajectory |
| keywords[3].id | https://openalex.org/keywords/big-data |
| keywords[3].score | 0.5963796377182007 |
| keywords[3].display_name | Big data |
| keywords[4].id | https://openalex.org/keywords/root-cause |
| keywords[4].score | 0.5655946731567383 |
| keywords[4].display_name | Root cause |
| keywords[5].id | https://openalex.org/keywords/regression-analysis |
| keywords[5].score | 0.5343441367149353 |
| keywords[5].display_name | Regression analysis |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.512537956237793 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/wafer-fabrication |
| keywords[7].score | 0.48506417870521545 |
| keywords[7].display_name | Wafer fabrication |
| keywords[8].id | https://openalex.org/keywords/root |
| keywords[8].score | 0.4729974865913391 |
| keywords[8].display_name | Root (linguistics) |
| keywords[9].id | https://openalex.org/keywords/regression |
| keywords[9].score | 0.4505607485771179 |
| keywords[9].display_name | Regression |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.399586945772171 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/reliability-engineering |
| keywords[11].score | 0.3802448511123657 |
| keywords[11].display_name | Reliability engineering |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.3768613934516907 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.2911117374897003 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/machine-learning |
| keywords[14].score | 0.28357988595962524 |
| keywords[14].display_name | Machine learning |
| keywords[15].id | https://openalex.org/keywords/engineering |
| keywords[15].score | 0.27815455198287964 |
| keywords[15].display_name | Engineering |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.18379870057106018 |
| keywords[16].display_name | Mathematics |
| keywords[17].id | https://openalex.org/keywords/electrical-engineering |
| keywords[17].score | 0.13797861337661743 |
| keywords[17].display_name | Electrical engineering |
| keywords[18].id | https://openalex.org/keywords/physics |
| keywords[18].score | 0.09363585710525513 |
| keywords[18].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1109/asmc64512.2025.11010733 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2025 36th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) |
| locations[0].landing_page_url | https://doi.org/10.1109/asmc64512.2025.11010733 |
| locations[1].id | pmh:oai:arXiv.org:2507.20357 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2507.20357 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2507.20357 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5001545412 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6702-7780 |
| authorships[0].author.display_name | Kohei Miyaguchi |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210145865 |
| authorships[0].affiliations[0].raw_affiliation_string | IBM Research – Tokyo,Tokyo,Japan |
| authorships[0].institutions[0].id | https://openalex.org/I4210145865 |
| authorships[0].institutions[0].ror | https://ror.org/04915qk43 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1341412227, https://openalex.org/I4210114115, https://openalex.org/I4210145865 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | IBM Research - Tokyo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kohei Miyaguchi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | IBM Research – Tokyo,Tokyo,Japan |
| authorships[1].author.id | https://openalex.org/A5057312581 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Masao Joko |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210145865 |
| authorships[1].affiliations[0].raw_affiliation_string | IBM Semiconductors,Tokyo,Japan |
| authorships[1].institutions[0].id | https://openalex.org/I4210145865 |
| authorships[1].institutions[0].ror | https://ror.org/04915qk43 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1341412227, https://openalex.org/I4210114115, https://openalex.org/I4210145865 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | IBM Research - Tokyo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Masao Joko |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | IBM Semiconductors,Tokyo,Japan |
| authorships[2].author.id | https://openalex.org/A5076778260 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Rebekah Sheraw |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1341412227 |
| authorships[2].affiliations[0].raw_affiliation_string | IBM Semiconductors,Albany,NY,USA |
| authorships[2].institutions[0].id | https://openalex.org/I1341412227 |
| authorships[2].institutions[0].ror | https://ror.org/05hh8d621 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I1341412227 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | IBM (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rebekah Sheraw |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | IBM Semiconductors,Albany,NY,USA |
| authorships[3].author.id | https://openalex.org/A5022048163 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8993-2776 |
| authorships[3].author.display_name | Tsuyoshi Idé |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1341412227 |
| authorships[3].affiliations[0].raw_affiliation_string | IBM Semiconductors,NY,USA |
| authorships[3].institutions[0].id | https://openalex.org/I1341412227 |
| authorships[3].institutions[0].ror | https://ror.org/05hh8d621 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I1341412227 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | IBM (United States) |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Tsuyoshi Idé |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | IBM Semiconductors,NY,USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.20357 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-05-28T00:00:00 |
| display_name | Wafer Defect Root Cause Analysis with Partial Trajectory Regression DM: Big Data Management and Machine Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.996999979019165 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2030594396, https://openalex.org/W2535098331, https://openalex.org/W2202104725, https://openalex.org/W4255366506, https://openalex.org/W2056250485, https://openalex.org/W4280640835, https://openalex.org/W2885334669, https://openalex.org/W2111856191, https://openalex.org/W4230518569, https://openalex.org/W4295855176 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.20357 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.20357 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.20357 |
| primary_location.id | doi:10.1109/asmc64512.2025.11010733 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2025 36th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) |
| primary_location.landing_page_url | https://doi.org/10.1109/asmc64512.2025.11010733 |
| publication_date | 2025-05-05 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2507812949, https://openalex.org/W2521071558, https://openalex.org/W2901215507, https://openalex.org/W7077083638, https://openalex.org/W4226110010, https://openalex.org/W4385484909, https://openalex.org/W4388917710, https://openalex.org/W2884425876, https://openalex.org/W4387911366, https://openalex.org/W3083380051, https://openalex.org/W4200224444, https://openalex.org/W4321374432, https://openalex.org/W4403024174, https://openalex.org/W1481376060, https://openalex.org/W142583486, https://openalex.org/W4404919461, https://openalex.org/W4401368171, https://openalex.org/W4205893379, https://openalex.org/W4403024242, https://openalex.org/W4407411996, https://openalex.org/W6636510571, https://openalex.org/W6739901393, https://openalex.org/W4226463366, https://openalex.org/W4317792685, https://openalex.org/W2975495759, https://openalex.org/W6737947904, https://openalex.org/W2516809705, https://openalex.org/W2616247523, https://openalex.org/W6810032775, https://openalex.org/W6793797138, https://openalex.org/W6790587931, https://openalex.org/W4385567719, https://openalex.org/W6676236601, https://openalex.org/W1510073064, https://openalex.org/W1516659296 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 40, 77, 93, 99, 104 |
| abstract_inverted_index.NY | 143 |
| abstract_inverted_index.To | 84 |
| abstract_inverted_index.We | 128 |
| abstract_inverted_index.as | 29 |
| abstract_inverted_index.by | 120 |
| abstract_inverted_index.in | 21, 70, 146 |
| abstract_inverted_index.is | 7, 57, 118 |
| abstract_inverted_index.of | 14, 64, 80, 89, 132 |
| abstract_inverted_index.on | 98 |
| abstract_inverted_index.to | 10, 60 |
| abstract_inverted_index.we | 102 |
| abstract_inverted_index.The | 54 |
| abstract_inverted_index.and | 17, 32, 126 |
| abstract_inverted_index.due | 9 |
| abstract_inverted_index.fab | 145 |
| abstract_inverted_index.for | 4, 43 |
| abstract_inverted_index.new | 105, 121 |
| abstract_inverted_index.the | 11, 18, 62, 86, 130, 133, 142 |
| abstract_inverted_index.two | 109 |
| abstract_inverted_index.This | 37, 117 |
| abstract_inverted_index.data | 140 |
| abstract_inverted_index.each | 90 |
| abstract_inverted_index.from | 26, 113, 141 |
| abstract_inverted_index.high | 95 |
| abstract_inverted_index.real | 137 |
| abstract_inverted_index.root | 46 |
| abstract_inverted_index.span | 76 |
| abstract_inverted_index.such | 28 |
| abstract_inverted_index.that | 75, 107 |
| abstract_inverted_index.cause | 47 |
| abstract_inverted_index.flows | 16 |
| abstract_inverted_index.given | 92 |
| abstract_inverted_index.large | 78 |
| abstract_inverted_index.novel | 41 |
| abstract_inverted_index.paper | 38 |
| abstract_inverted_index.score | 88 |
| abstract_inverted_index.using | 136 |
| abstract_inverted_index.wafer | 5, 44, 138 |
| abstract_inverted_index.which | 24 |
| abstract_inverted_index.(PTR). | 53 |
| abstract_inverted_index.arises | 25 |
| abstract_inverted_index.called | 49 |
| abstract_inverted_index.defect | 45, 96 |
| abstract_inverted_index.nature | 13 |
| abstract_inverted_index.number | 79 |
| abstract_inverted_index.random | 33 |
| abstract_inverted_index.rework | 30 |
| abstract_inverted_index.routes | 74 |
| abstract_inverted_index.times. | 36 |
| abstract_inverted_index.wafer, | 101 |
| abstract_inverted_index.Albany. | 147 |
| abstract_inverted_index.CREATES | 144 |
| abstract_inverted_index.Partial | 50 |
| abstract_inverted_index.address | 61 |
| abstract_inverted_index.compute | 85 |
| abstract_inverted_index.defects | 6 |
| abstract_inverted_index.density | 97 |
| abstract_inverted_index.derived | 112 |
| abstract_inverted_index.enabled | 119 |
| abstract_inverted_index.factors | 27 |
| abstract_inverted_index.history | 139 |
| abstract_inverted_index.models, | 68 |
| abstract_inverted_index.partial | 114 |
| abstract_inverted_index.process | 15, 34, 91, 115 |
| abstract_inverted_index.propose | 103 |
| abstract_inverted_index.routes, | 23 |
| abstract_inverted_index.waiting | 35 |
| abstract_inverted_index.compares | 108 |
| abstract_inverted_index.designed | 59 |
| abstract_inverted_index.detected | 94 |
| abstract_inverted_index.handling | 71 |
| abstract_inverted_index.inherent | 19 |
| abstract_inverted_index.learning | 123 |
| abstract_inverted_index.methods, | 124 |
| abstract_inverted_index.outcomes | 111 |
| abstract_inverted_index.physical | 82 |
| abstract_inverted_index.presents | 39 |
| abstract_inverted_index.proc2vec | 125 |
| abstract_inverted_index.proposed | 55, 134 |
| abstract_inverted_index.specific | 100 |
| abstract_inverted_index.upstream | 1 |
| abstract_inverted_index.algorithm | 106 |
| abstract_inverted_index.analysis, | 48 |
| abstract_inverted_index.carefully | 58 |
| abstract_inverted_index.framework | 42, 56, 135 |
| abstract_inverted_index.processes | 2 |
| abstract_inverted_index.Regression | 52 |
| abstract_inverted_index.Trajectory | 51 |
| abstract_inverted_index.operations | 31 |
| abstract_inverted_index.processes. | 83 |
| abstract_inverted_index.processing | 22, 73 |
| abstract_inverted_index.regression | 67 |
| abstract_inverted_index.route2vec. | 127 |
| abstract_inverted_index.Identifying | 0 |
| abstract_inverted_index.attribution | 87 |
| abstract_inverted_index.challenging | 8 |
| abstract_inverted_index.demonstrate | 129 |
| abstract_inverted_index.limitations | 63 |
| abstract_inverted_index.responsible | 3 |
| abstract_inverted_index.variability | 20 |
| abstract_inverted_index.conventional | 65 |
| abstract_inverted_index.particularly | 69 |
| abstract_inverted_index.vector-based | 66 |
| abstract_inverted_index.combinatorial | 12 |
| abstract_inverted_index.effectiveness | 131 |
| abstract_inverted_index.heterogeneous | 81 |
| abstract_inverted_index.trajectories. | 116 |
| abstract_inverted_index.counterfactual | 110 |
| abstract_inverted_index.representation | 122 |
| abstract_inverted_index.variable-length | 72 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.87411237 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |