Wasserstein-based Graph Alignment Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2003.06048
We propose a novel method for comparing non-aligned graphs of different sizes, based on the Wasserstein distance between graph signal distributions induced by the respective graph Laplacian matrices. Specifically, we cast a new formulation for the one-to-many graph alignment problem, which aims at matching a node in the smaller graph with one or more nodes in the larger graph. By integrating optimal transport in our graph comparison framework, we generate both a structurally-meaningful graph distance, and a signal transportation plan that models the structure of graph data. The resulting alignment problem is solved with stochastic gradient descent, where we use a novel Dykstra operator to ensure that the solution is a one-to-many (soft) assignment matrix. We demonstrate the performance of our novel framework on graph alignment and graph classification, and we show that our method leads to significant improvements with respect to the state-of-the-art algorithms for each of these tasks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.48550/arxiv.2003.06048
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4287827140
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4287827140Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2003.06048Digital Object Identifier
- Title
-
Wasserstein-based Graph AlignmentWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-03-12Full publication date if available
- Authors
-
Hermina Petric Maretić, Mireille El Gheche, Matthias Minder, Giovanni Chierchia, Pascal FrossardList of authors in order
- Landing page
-
https://doi.org/10.48550/arxiv.2003.06048Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48550/arxiv.2003.06048Direct OA link when available
- Concepts
-
Voltage graph, Graph, Butterfly graph, Null graph, Line graph, Computer science, Strength of a graph, Laplacian matrix, Complement graph, Algorithm, Theoretical computer science, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2022: 1, 2021: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4287827140 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2003.06048 |
| ids.doi | https://doi.org/10.48550/arxiv.2003.06048 |
| ids.openalex | https://openalex.org/W4287827140 |
| fwci | |
| type | preprint |
| title | Wasserstein-based Graph Alignment |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T10064 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9965999722480774 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Complex Network Analysis Techniques |
| topics[2].id | https://openalex.org/T10799 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9379000067710876 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Data Visualization and Analytics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C22149727 |
| concepts[0].level | 4 |
| concepts[0].score | 0.5417242050170898 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7940747 |
| concepts[0].display_name | Voltage graph |
| concepts[1].id | https://openalex.org/C132525143 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5390578508377075 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[1].display_name | Graph |
| concepts[2].id | https://openalex.org/C18819970 |
| concepts[2].level | 5 |
| concepts[2].score | 0.5182176232337952 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3035340 |
| concepts[2].display_name | Butterfly graph |
| concepts[3].id | https://openalex.org/C17169500 |
| concepts[3].level | 5 |
| concepts[3].score | 0.5154250860214233 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3033506 |
| concepts[3].display_name | Null graph |
| concepts[4].id | https://openalex.org/C203776342 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4964049458503723 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1378376 |
| concepts[4].display_name | Line graph |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4963987469673157 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C19332903 |
| concepts[6].level | 5 |
| concepts[6].score | 0.493144690990448 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7623247 |
| concepts[6].display_name | Strength of a graph |
| concepts[7].id | https://openalex.org/C115178988 |
| concepts[7].level | 3 |
| concepts[7].score | 0.46287137269973755 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q772067 |
| concepts[7].display_name | Laplacian matrix |
| concepts[8].id | https://openalex.org/C168291704 |
| concepts[8].level | 5 |
| concepts[8].score | 0.4303275942802429 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q902252 |
| concepts[8].display_name | Complement graph |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3608824610710144 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C80444323 |
| concepts[10].level | 1 |
| concepts[10].score | 0.35518449544906616 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[10].display_name | Theoretical computer science |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.33135104179382324 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/voltage-graph |
| keywords[0].score | 0.5417242050170898 |
| keywords[0].display_name | Voltage graph |
| keywords[1].id | https://openalex.org/keywords/graph |
| keywords[1].score | 0.5390578508377075 |
| keywords[1].display_name | Graph |
| keywords[2].id | https://openalex.org/keywords/butterfly-graph |
| keywords[2].score | 0.5182176232337952 |
| keywords[2].display_name | Butterfly graph |
| keywords[3].id | https://openalex.org/keywords/null-graph |
| keywords[3].score | 0.5154250860214233 |
| keywords[3].display_name | Null graph |
| keywords[4].id | https://openalex.org/keywords/line-graph |
| keywords[4].score | 0.4964049458503723 |
| keywords[4].display_name | Line graph |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.4963987469673157 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/strength-of-a-graph |
| keywords[6].score | 0.493144690990448 |
| keywords[6].display_name | Strength of a graph |
| keywords[7].id | https://openalex.org/keywords/laplacian-matrix |
| keywords[7].score | 0.46287137269973755 |
| keywords[7].display_name | Laplacian matrix |
| keywords[8].id | https://openalex.org/keywords/complement-graph |
| keywords[8].score | 0.4303275942802429 |
| keywords[8].display_name | Complement graph |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.3608824610710144 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[10].score | 0.35518449544906616 |
| keywords[10].display_name | Theoretical computer science |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.33135104179382324 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.48550/arxiv.2003.06048 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.48550/arxiv.2003.06048 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5065772016 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7780-9244 |
| authorships[0].author.display_name | Hermina Petric Maretić |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Maretic, Hermina Petric |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5103262517 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2411-4064 |
| authorships[1].author.display_name | Mireille El Gheche |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gheche, Mireille El |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5051729318 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Matthias Minder |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Minder, Matthias |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5057226360 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5899-689X |
| authorships[3].author.display_name | Giovanni Chierchia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chierchia, Giovanni |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5000947076 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4010-714X |
| authorships[4].author.display_name | Pascal Frossard |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Frossard, Pascal |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48550/arxiv.2003.06048 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Wasserstein-based Graph Alignment |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| related_works | https://openalex.org/W2278094798, https://openalex.org/W2900680118, https://openalex.org/W2065459306, https://openalex.org/W2108781142, https://openalex.org/W2793949464, https://openalex.org/W2014355235, https://openalex.org/W3175246409, https://openalex.org/W2071056049, https://openalex.org/W3209476063, https://openalex.org/W2964146318 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48550/arxiv.2003.06048 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48550/arxiv.2003.06048 |
| primary_location.id | doi:10.48550/arxiv.2003.06048 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.48550/arxiv.2003.06048 |
| publication_date | 2020-03-12 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 31, 44, 71, 76, 100, 110 |
| abstract_inverted_index.By | 59 |
| abstract_inverted_index.We | 0, 115 |
| abstract_inverted_index.at | 42 |
| abstract_inverted_index.by | 22 |
| abstract_inverted_index.in | 46, 55, 63 |
| abstract_inverted_index.is | 91, 109 |
| abstract_inverted_index.of | 9, 84, 119, 147 |
| abstract_inverted_index.on | 13, 123 |
| abstract_inverted_index.or | 52 |
| abstract_inverted_index.to | 104, 136, 141 |
| abstract_inverted_index.we | 29, 68, 98, 130 |
| abstract_inverted_index.The | 87 |
| abstract_inverted_index.and | 75, 126, 129 |
| abstract_inverted_index.for | 5, 34, 145 |
| abstract_inverted_index.new | 32 |
| abstract_inverted_index.one | 51 |
| abstract_inverted_index.our | 64, 120, 133 |
| abstract_inverted_index.the | 14, 23, 35, 47, 56, 82, 107, 117, 142 |
| abstract_inverted_index.use | 99 |
| abstract_inverted_index.aims | 41 |
| abstract_inverted_index.both | 70 |
| abstract_inverted_index.cast | 30 |
| abstract_inverted_index.each | 146 |
| abstract_inverted_index.more | 53 |
| abstract_inverted_index.node | 45 |
| abstract_inverted_index.plan | 79 |
| abstract_inverted_index.show | 131 |
| abstract_inverted_index.that | 80, 106, 132 |
| abstract_inverted_index.with | 50, 93, 139 |
| abstract_inverted_index.based | 12 |
| abstract_inverted_index.data. | 86 |
| abstract_inverted_index.graph | 18, 25, 37, 49, 65, 73, 85, 124, 127 |
| abstract_inverted_index.leads | 135 |
| abstract_inverted_index.nodes | 54 |
| abstract_inverted_index.novel | 3, 101, 121 |
| abstract_inverted_index.these | 148 |
| abstract_inverted_index.where | 97 |
| abstract_inverted_index.which | 40 |
| abstract_inverted_index.(soft) | 112 |
| abstract_inverted_index.ensure | 105 |
| abstract_inverted_index.graph. | 58 |
| abstract_inverted_index.graphs | 8 |
| abstract_inverted_index.larger | 57 |
| abstract_inverted_index.method | 4, 134 |
| abstract_inverted_index.models | 81 |
| abstract_inverted_index.signal | 19, 77 |
| abstract_inverted_index.sizes, | 11 |
| abstract_inverted_index.solved | 92 |
| abstract_inverted_index.tasks. | 149 |
| abstract_inverted_index.Dykstra | 102 |
| abstract_inverted_index.between | 17 |
| abstract_inverted_index.induced | 21 |
| abstract_inverted_index.matrix. | 114 |
| abstract_inverted_index.optimal | 61 |
| abstract_inverted_index.problem | 90 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.respect | 140 |
| abstract_inverted_index.smaller | 48 |
| abstract_inverted_index.descent, | 96 |
| abstract_inverted_index.distance | 16 |
| abstract_inverted_index.generate | 69 |
| abstract_inverted_index.gradient | 95 |
| abstract_inverted_index.matching | 43 |
| abstract_inverted_index.operator | 103 |
| abstract_inverted_index.problem, | 39 |
| abstract_inverted_index.solution | 108 |
| abstract_inverted_index.Laplacian | 26 |
| abstract_inverted_index.alignment | 38, 89, 125 |
| abstract_inverted_index.comparing | 6 |
| abstract_inverted_index.different | 10 |
| abstract_inverted_index.distance, | 74 |
| abstract_inverted_index.framework | 122 |
| abstract_inverted_index.matrices. | 27 |
| abstract_inverted_index.resulting | 88 |
| abstract_inverted_index.structure | 83 |
| abstract_inverted_index.transport | 62 |
| abstract_inverted_index.algorithms | 144 |
| abstract_inverted_index.assignment | 113 |
| abstract_inverted_index.comparison | 66 |
| abstract_inverted_index.framework, | 67 |
| abstract_inverted_index.respective | 24 |
| abstract_inverted_index.stochastic | 94 |
| abstract_inverted_index.Wasserstein | 15 |
| abstract_inverted_index.demonstrate | 116 |
| abstract_inverted_index.formulation | 33 |
| abstract_inverted_index.integrating | 60 |
| abstract_inverted_index.non-aligned | 7 |
| abstract_inverted_index.one-to-many | 36, 111 |
| abstract_inverted_index.performance | 118 |
| abstract_inverted_index.significant | 137 |
| abstract_inverted_index.improvements | 138 |
| abstract_inverted_index.Specifically, | 28 |
| abstract_inverted_index.distributions | 20 |
| abstract_inverted_index.transportation | 78 |
| abstract_inverted_index.classification, | 128 |
| abstract_inverted_index.state-of-the-art | 143 |
| abstract_inverted_index.structurally-meaningful | 72 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile |