Wassmap: Wasserstein Isometric Mapping for Image Manifold Learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1137/22m1490053
.In this paper, we propose Wasserstein Isometric Mapping (Wassmap), a nonlinear dimensionality reduction technique that provides solutions to some drawbacks in existing global nonlinear dimensionality reduction algorithms in imaging applications. Wassmap represents images via probability measures in Wasserstein space, then uses pairwise Wasserstein distances between the associated measures to produce a low-dimensional, approximately isometric embedding. We show that the algorithm is able to exactly recover parameters of some image manifolds, including those generated by translations or dilations of a fixed generating measure. Additionally, we show that a discrete version of the algorithm retrieves parameters from manifolds generated from discrete measures by providing a theoretical bridge to transfer recovery results from functional data to discrete data. Testing of the proposed algorithms on various image data manifolds shows that Wassmap yields good embeddings compared with other global and local techniques.Keywordsmanifold learningnonlinear dimensionality reductionoptimal transportWasserstein spaceIsomapMSC codes68T1049Q22
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1137/22m1490053
- OA Status
- diamond
- Cited By
- 16
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4379647309
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4379647309Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1137/22m1490053Digital Object Identifier
- Title
-
Wassmap: Wasserstein Isometric Mapping for Image Manifold LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-07Full publication date if available
- Authors
-
Keaton Hamm, Nick Henscheid, Shujie KangList of authors in order
- Landing page
-
https://doi.org/10.1137/22m1490053Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1137/22m1490053Direct OA link when available
- Concepts
-
Nonlinear dimensionality reduction, Dimensionality reduction, Embedding, Mathematics, Manifold (fluid mechanics), Pairwise comparison, Measure (data warehouse), Curse of dimensionality, Image (mathematics), Nonlinear system, Computer science, Algorithm, Artificial intelligence, Data mining, Physics, Engineering, Mechanical engineering, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
16Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 7, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4379647309 |
|---|---|
| doi | https://doi.org/10.1137/22m1490053 |
| ids.doi | https://doi.org/10.1137/22m1490053 |
| ids.openalex | https://openalex.org/W4379647309 |
| fwci | 4.94337926 |
| type | article |
| title | Wassmap: Wasserstein Isometric Mapping for Image Manifold Learning |
| awards[0].id | https://openalex.org/G4665397012 |
| awards[0].funder_id | https://openalex.org/F4320337363 |
| awards[0].display_name | |
| awards[0].funder_award_id | R01EB000803 |
| awards[0].funder_display_name | National Institute of Biomedical Imaging and Bioengineering |
| awards[1].id | https://openalex.org/G6384593338 |
| awards[1].funder_id | https://openalex.org/F4320338281 |
| awards[1].display_name | |
| awards[1].funder_award_id | W911NF-20-1-0076 |
| awards[1].funder_display_name | Army Research Office |
| biblio.issue | 2 |
| biblio.volume | 5 |
| biblio.last_page | 501 |
| biblio.first_page | 475 |
| topics[0].id | https://openalex.org/T12536 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9958999752998352 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Topological and Geometric Data Analysis |
| topics[1].id | https://openalex.org/T10052 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9908000230789185 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Medical Image Segmentation Techniques |
| topics[2].id | https://openalex.org/T11105 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9886000156402588 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image Processing Techniques |
| funders[0].id | https://openalex.org/F4320337363 |
| funders[0].ror | https://ror.org/00372qc85 |
| funders[0].display_name | National Institute of Biomedical Imaging and Bioengineering |
| funders[1].id | https://openalex.org/F4320338281 |
| funders[1].ror | https://ror.org/05epdh915 |
| funders[1].display_name | Army Research Office |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C151876577 |
| concepts[0].level | 3 |
| concepts[0].score | 0.81025230884552 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7049464 |
| concepts[0].display_name | Nonlinear dimensionality reduction |
| concepts[1].id | https://openalex.org/C70518039 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7118998169898987 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[1].display_name | Dimensionality reduction |
| concepts[2].id | https://openalex.org/C41608201 |
| concepts[2].level | 2 |
| concepts[2].score | 0.704421877861023 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[2].display_name | Embedding |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5797935724258423 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C529865628 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5698987245559692 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1790740 |
| concepts[4].display_name | Manifold (fluid mechanics) |
| concepts[5].id | https://openalex.org/C184898388 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5394095182418823 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1435712 |
| concepts[5].display_name | Pairwise comparison |
| concepts[6].id | https://openalex.org/C2780009758 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5365042686462402 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6804172 |
| concepts[6].display_name | Measure (data warehouse) |
| concepts[7].id | https://openalex.org/C111030470 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5107012391090393 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1430460 |
| concepts[7].display_name | Curse of dimensionality |
| concepts[8].id | https://openalex.org/C115961682 |
| concepts[8].level | 2 |
| concepts[8].score | 0.49446988105773926 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[8].display_name | Image (mathematics) |
| concepts[9].id | https://openalex.org/C158622935 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4854651093482971 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[9].display_name | Nonlinear system |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.42273223400115967 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4204733967781067 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3908234238624573 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.12036165595054626 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C78519656 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[16].display_name | Mechanical engineering |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/nonlinear-dimensionality-reduction |
| keywords[0].score | 0.81025230884552 |
| keywords[0].display_name | Nonlinear dimensionality reduction |
| keywords[1].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[1].score | 0.7118998169898987 |
| keywords[1].display_name | Dimensionality reduction |
| keywords[2].id | https://openalex.org/keywords/embedding |
| keywords[2].score | 0.704421877861023 |
| keywords[2].display_name | Embedding |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.5797935724258423 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/manifold |
| keywords[4].score | 0.5698987245559692 |
| keywords[4].display_name | Manifold (fluid mechanics) |
| keywords[5].id | https://openalex.org/keywords/pairwise-comparison |
| keywords[5].score | 0.5394095182418823 |
| keywords[5].display_name | Pairwise comparison |
| keywords[6].id | https://openalex.org/keywords/measure |
| keywords[6].score | 0.5365042686462402 |
| keywords[6].display_name | Measure (data warehouse) |
| keywords[7].id | https://openalex.org/keywords/curse-of-dimensionality |
| keywords[7].score | 0.5107012391090393 |
| keywords[7].display_name | Curse of dimensionality |
| keywords[8].id | https://openalex.org/keywords/image |
| keywords[8].score | 0.49446988105773926 |
| keywords[8].display_name | Image (mathematics) |
| keywords[9].id | https://openalex.org/keywords/nonlinear-system |
| keywords[9].score | 0.4854651093482971 |
| keywords[9].display_name | Nonlinear system |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.42273223400115967 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.4204733967781067 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.3908234238624573 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.12036165595054626 |
| keywords[13].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.1137/22m1490053 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210229561 |
| locations[0].source.issn | 2577-0187 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2577-0187 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SIAM Journal on Mathematics of Data Science |
| locations[0].source.host_organization | https://openalex.org/P4310320508 |
| locations[0].source.host_organization_name | Society for Industrial and Applied Mathematics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320508 |
| locations[0].source.host_organization_lineage_names | Society for Industrial and Applied Mathematics |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | SIAM Journal on Mathematics of Data Science |
| locations[0].landing_page_url | https://doi.org/10.1137/22m1490053 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5064380948 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0719-6045 |
| authorships[0].author.display_name | Keaton Hamm |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I189196454 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019 USA. |
| authorships[0].institutions[0].id | https://openalex.org/I189196454 |
| authorships[0].institutions[0].ror | https://ror.org/019kgqr73 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I189196454 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | The University of Texas at Arlington |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Keaton Hamm |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019 USA. |
| authorships[1].author.id | https://openalex.org/A5010348079 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9361-6976 |
| authorships[1].author.display_name | Nick Henscheid |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210124665 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Medical Imaging, University of Arizona, Tucson, AZ 85724 USA. |
| authorships[1].institutions[0].id | https://openalex.org/I4210124665 |
| authorships[1].institutions[0].ror | https://ror.org/02xbk5j62 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210124665 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Banner - University Medical Center Tucson |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nick Henscheid |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Medical Imaging, University of Arizona, Tucson, AZ 85724 USA. |
| authorships[2].author.id | https://openalex.org/A5041656725 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Shujie Kang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I189196454 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019 USA. |
| authorships[2].institutions[0].id | https://openalex.org/I189196454 |
| authorships[2].institutions[0].ror | https://ror.org/019kgqr73 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I189196454 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | The University of Texas at Arlington |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Shujie Kang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019 USA. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1137/22m1490053 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Wassmap: Wasserstein Isometric Mapping for Image Manifold Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12536 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9958999752998352 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Topological and Geometric Data Analysis |
| related_works | https://openalex.org/W2375574759, https://openalex.org/W3088634662, https://openalex.org/W3162910294, https://openalex.org/W2539700568, https://openalex.org/W1995622179, https://openalex.org/W1484111231, https://openalex.org/W2383239174, https://openalex.org/W117517268, https://openalex.org/W2166963679, https://openalex.org/W2573981081 |
| cited_by_count | 16 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1137/22m1490053 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210229561 |
| best_oa_location.source.issn | 2577-0187 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2577-0187 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SIAM Journal on Mathematics of Data Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320508 |
| best_oa_location.source.host_organization_name | Society for Industrial and Applied Mathematics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320508 |
| best_oa_location.source.host_organization_lineage_names | Society for Industrial and Applied Mathematics |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | SIAM Journal on Mathematics of Data Science |
| best_oa_location.landing_page_url | https://doi.org/10.1137/22m1490053 |
| primary_location.id | doi:10.1137/22m1490053 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210229561 |
| primary_location.source.issn | 2577-0187 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2577-0187 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SIAM Journal on Mathematics of Data Science |
| primary_location.source.host_organization | https://openalex.org/P4310320508 |
| primary_location.source.host_organization_name | Society for Industrial and Applied Mathematics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320508 |
| primary_location.source.host_organization_lineage_names | Society for Industrial and Applied Mathematics |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | SIAM Journal on Mathematics of Data Science |
| primary_location.landing_page_url | https://doi.org/10.1137/22m1490053 |
| publication_date | 2023-06-07 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4245253888, https://openalex.org/W2160850888, https://openalex.org/W2902652978, https://openalex.org/W2097308346, https://openalex.org/W2077180490, https://openalex.org/W3217527333, https://openalex.org/W2154249783, https://openalex.org/W2132883347, https://openalex.org/W2053985176, https://openalex.org/W4213367101, https://openalex.org/W2156838815, https://openalex.org/W1994154911, https://openalex.org/W2963693826, https://openalex.org/W2096413780, https://openalex.org/W2100495367, https://openalex.org/W2509518867, https://openalex.org/W2046104068, https://openalex.org/W3197713830, https://openalex.org/W2240450848, https://openalex.org/W2735418187, https://openalex.org/W1742512077, https://openalex.org/W1972801555, https://openalex.org/W1519654970, https://openalex.org/W2889326414, https://openalex.org/W1526636590, https://openalex.org/W2267271843, https://openalex.org/W4206471589, https://openalex.org/W2117863806, https://openalex.org/W2053186076, https://openalex.org/W4255839052, https://openalex.org/W2211336473, https://openalex.org/W2534420330, https://openalex.org/W4248500611, https://openalex.org/W2001141328, https://openalex.org/W2132442278, https://openalex.org/W2094100343, https://openalex.org/W1965359844, https://openalex.org/W2061681393, https://openalex.org/W4395086252, https://openalex.org/W4310895557, https://openalex.org/W2607074821, https://openalex.org/W385466589, https://openalex.org/W3101920124, https://openalex.org/W1585160083, https://openalex.org/W1598140581, https://openalex.org/W2978329087 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 9, 50, 78, 86, 102 |
| abstract_inverted_index.We | 55 |
| abstract_inverted_index.by | 73, 100 |
| abstract_inverted_index.in | 20, 27, 36 |
| abstract_inverted_index.is | 60 |
| abstract_inverted_index.of | 66, 77, 89, 116 |
| abstract_inverted_index.on | 120 |
| abstract_inverted_index.or | 75 |
| abstract_inverted_index.to | 17, 48, 62, 105, 112 |
| abstract_inverted_index.we | 3, 83 |
| abstract_inverted_index..In | 0 |
| abstract_inverted_index.and | 135 |
| abstract_inverted_index.the | 45, 58, 90, 117 |
| abstract_inverted_index.via | 33 |
| abstract_inverted_index.able | 61 |
| abstract_inverted_index.data | 111, 123 |
| abstract_inverted_index.from | 94, 97, 109 |
| abstract_inverted_index.good | 129 |
| abstract_inverted_index.show | 56, 84 |
| abstract_inverted_index.some | 18, 67 |
| abstract_inverted_index.that | 14, 57, 85, 126 |
| abstract_inverted_index.then | 39 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.uses | 40 |
| abstract_inverted_index.with | 132 |
| abstract_inverted_index.data. | 114 |
| abstract_inverted_index.fixed | 79 |
| abstract_inverted_index.image | 68, 122 |
| abstract_inverted_index.local | 136 |
| abstract_inverted_index.other | 133 |
| abstract_inverted_index.shows | 125 |
| abstract_inverted_index.those | 71 |
| abstract_inverted_index.bridge | 104 |
| abstract_inverted_index.global | 22, 134 |
| abstract_inverted_index.images | 32 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.space, | 38 |
| abstract_inverted_index.yields | 128 |
| abstract_inverted_index.Mapping | 7 |
| abstract_inverted_index.Testing | 115 |
| abstract_inverted_index.Wassmap | 30, 127 |
| abstract_inverted_index.between | 44 |
| abstract_inverted_index.exactly | 63 |
| abstract_inverted_index.imaging | 28 |
| abstract_inverted_index.produce | 49 |
| abstract_inverted_index.propose | 4 |
| abstract_inverted_index.recover | 64 |
| abstract_inverted_index.results | 108 |
| abstract_inverted_index.various | 121 |
| abstract_inverted_index.version | 88 |
| abstract_inverted_index.compared | 131 |
| abstract_inverted_index.discrete | 87, 98, 113 |
| abstract_inverted_index.existing | 21 |
| abstract_inverted_index.measure. | 81 |
| abstract_inverted_index.measures | 35, 47, 99 |
| abstract_inverted_index.pairwise | 41 |
| abstract_inverted_index.proposed | 118 |
| abstract_inverted_index.provides | 15 |
| abstract_inverted_index.recovery | 107 |
| abstract_inverted_index.transfer | 106 |
| abstract_inverted_index.Isometric | 6 |
| abstract_inverted_index.algorithm | 59, 91 |
| abstract_inverted_index.dilations | 76 |
| abstract_inverted_index.distances | 43 |
| abstract_inverted_index.drawbacks | 19 |
| abstract_inverted_index.generated | 72, 96 |
| abstract_inverted_index.including | 70 |
| abstract_inverted_index.isometric | 53 |
| abstract_inverted_index.manifolds | 95, 124 |
| abstract_inverted_index.nonlinear | 10, 23 |
| abstract_inverted_index.providing | 101 |
| abstract_inverted_index.reduction | 12, 25 |
| abstract_inverted_index.retrieves | 92 |
| abstract_inverted_index.solutions | 16 |
| abstract_inverted_index.technique | 13 |
| abstract_inverted_index.(Wassmap), | 8 |
| abstract_inverted_index.algorithms | 26, 119 |
| abstract_inverted_index.associated | 46 |
| abstract_inverted_index.embedding. | 54 |
| abstract_inverted_index.embeddings | 130 |
| abstract_inverted_index.functional | 110 |
| abstract_inverted_index.generating | 80 |
| abstract_inverted_index.manifolds, | 69 |
| abstract_inverted_index.parameters | 65, 93 |
| abstract_inverted_index.represents | 31 |
| abstract_inverted_index.Wasserstein | 5, 37, 42 |
| abstract_inverted_index.probability | 34 |
| abstract_inverted_index.theoretical | 103 |
| abstract_inverted_index.translations | 74 |
| abstract_inverted_index.Additionally, | 82 |
| abstract_inverted_index.applications. | 29 |
| abstract_inverted_index.approximately | 52 |
| abstract_inverted_index.dimensionality | 11, 24, 139 |
| abstract_inverted_index.spaceIsomapMSC | 142 |
| abstract_inverted_index.codes68T1049Q22 | 143 |
| abstract_inverted_index.low-dimensional, | 51 |
| abstract_inverted_index.reductionoptimal | 140 |
| abstract_inverted_index.learningnonlinear | 138 |
| abstract_inverted_index.transportWasserstein | 141 |
| abstract_inverted_index.techniques.Keywordsmanifold | 137 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.94467631 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |