Waste Classification for Sustainable Development Using Image Recognition with Deep Learning Neural Network Models Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/su14127222
The proper handling of waste is one of the biggest challenges of modern society. Municipal Solid Waste (MSW) requires categorization into a number of types, including bio, plastic, glass, metal, paper, etc. The most efficient techniques proposed by researchers so far include neural networks. In this paper, a detailed summarization was made of the existing deep learning techniques that have been proposed to classify waste. This paper proposes an architecture for the classification of litter into the categories specified in the benchmark approaches. The architecture used for classification was EfficientNet-B0. These are compound-scaling based models proposed by Google that are pretrained on ImageNet and have an accuracy of 74% to 84% in top-1 over ImageNet. This research proposes EfficientNet-B0 model tuning for images specific to particular demographic regions for efficient classification. This type of model tuning over transfer learning provides a customized model for classification, highly optimized for a particular region. It was shown that such a model had comparable accuracy to that of EfficientNet-B3, however, with a significantly smaller number of parameters required by the B3 model. Thus, the proposed technique achieved efficiency on the order of 4X in terms of FLOPS. Moreover, it resulted in improvised classifications as a result of fine-tuning over region-wise specific litter images.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/su14127222
- https://www.mdpi.com/2071-1050/14/12/7222/pdf?version=1658817156
- OA Status
- gold
- Cited By
- 129
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4282831800
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4282831800Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/su14127222Digital Object Identifier
- Title
-
Waste Classification for Sustainable Development Using Image Recognition with Deep Learning Neural Network ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-13Full publication date if available
- Authors
-
Meena Malik, Sachin Sharma, Mueen Uddin, Chin‐Ling Chen, Chih-Ming Wu, Punit Soni, Shikha ChaudharyList of authors in order
- Landing page
-
https://doi.org/10.3390/su14127222Publisher landing page
- PDF URL
-
https://www.mdpi.com/2071-1050/14/12/7222/pdf?version=1658817156Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2071-1050/14/12/7222/pdf?version=1658817156Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Categorization, Contextual image classification, Artificial neural network, Transfer of learning, Automatic summarization, Machine learning, Benchmark (surveying), Scalability, Deep learning, Image (mathematics), Database, Geography, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
129Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 56, 2024: 46, 2023: 25, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4282831800 |
|---|---|
| doi | https://doi.org/10.3390/su14127222 |
| ids.doi | https://doi.org/10.3390/su14127222 |
| ids.openalex | https://openalex.org/W4282831800 |
| fwci | 15.96914235 |
| type | article |
| title | Waste Classification for Sustainable Development Using Image Recognition with Deep Learning Neural Network Models |
| biblio.issue | 12 |
| biblio.volume | 14 |
| biblio.last_page | 7222 |
| biblio.first_page | 7222 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9937999844551086 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T11108 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9783999919891357 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2311 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Municipal Solid Waste Management |
| topics[2].id | https://openalex.org/T10689 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9739999771118164 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Remote-Sensing Image Classification |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6487312912940979 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6384512186050415 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C94124525 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6272303462028503 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q912550 |
| concepts[2].display_name | Categorization |
| concepts[3].id | https://openalex.org/C75294576 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6138113737106323 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5165192 |
| concepts[3].display_name | Contextual image classification |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6135696768760681 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C150899416 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6040034294128418 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[5].display_name | Transfer of learning |
| concepts[6].id | https://openalex.org/C170858558 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5951752662658691 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1394144 |
| concepts[6].display_name | Automatic summarization |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5855553150177002 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C185798385 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5492267608642578 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[8].display_name | Benchmark (surveying) |
| concepts[9].id | https://openalex.org/C48044578 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5299870371818542 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[9].display_name | Scalability |
| concepts[10].id | https://openalex.org/C108583219 |
| concepts[10].level | 2 |
| concepts[10].score | 0.514372706413269 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[10].display_name | Deep learning |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.2816316783428192 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C77088390 |
| concepts[12].level | 1 |
| concepts[12].score | 0.08220389485359192 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[12].display_name | Database |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C13280743 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[14].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6487312912940979 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6384512186050415 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/categorization |
| keywords[2].score | 0.6272303462028503 |
| keywords[2].display_name | Categorization |
| keywords[3].id | https://openalex.org/keywords/contextual-image-classification |
| keywords[3].score | 0.6138113737106323 |
| keywords[3].display_name | Contextual image classification |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.6135696768760681 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[5].score | 0.6040034294128418 |
| keywords[5].display_name | Transfer of learning |
| keywords[6].id | https://openalex.org/keywords/automatic-summarization |
| keywords[6].score | 0.5951752662658691 |
| keywords[6].display_name | Automatic summarization |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.5855553150177002 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/benchmark |
| keywords[8].score | 0.5492267608642578 |
| keywords[8].display_name | Benchmark (surveying) |
| keywords[9].id | https://openalex.org/keywords/scalability |
| keywords[9].score | 0.5299870371818542 |
| keywords[9].display_name | Scalability |
| keywords[10].id | https://openalex.org/keywords/deep-learning |
| keywords[10].score | 0.514372706413269 |
| keywords[10].display_name | Deep learning |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.2816316783428192 |
| keywords[11].display_name | Image (mathematics) |
| keywords[12].id | https://openalex.org/keywords/database |
| keywords[12].score | 0.08220389485359192 |
| keywords[12].display_name | Database |
| language | en |
| locations[0].id | doi:10.3390/su14127222 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S10134376 |
| locations[0].source.issn | 2071-1050 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2071-1050 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Sustainability |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2071-1050/14/12/7222/pdf?version=1658817156 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sustainability |
| locations[0].landing_page_url | https://doi.org/10.3390/su14127222 |
| locations[1].id | pmh:oai:figshare.com:article/24717537 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400572 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[1].source.host_organization | https://openalex.org/I196829312 |
| locations[1].source.host_organization_name | La Trobe University |
| locations[1].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://figshare.com/articles/journal_contribution/Waste_Classification_for_Sustainable_Development_Using_Image_Recognition_with_Deep_Learning_Neural_Network_Models/24717537 |
| locations[2].id | pmh:oai:mdpi.com:/2071-1050/14/12/7222/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sustainability; Volume 14; Issue 12; Pages: 7222 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/su14127222 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5070039424 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8654-7143 |
| authorships[0].author.display_name | Meena Malik |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I8977528 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of CSE, Sagar Institute of Science & Technology, Bhopal 462036, Madhya Pradesh, India |
| authorships[0].institutions[0].id | https://openalex.org/I8977528 |
| authorships[0].institutions[0].ror | https://ror.org/01xapxe37 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I8977528 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Dr. Hari Singh Gour University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Meena Malik |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of CSE, Sagar Institute of Science & Technology, Bhopal 462036, Madhya Pradesh, India |
| authorships[1].author.id | https://openalex.org/A5012364692 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6855-6940 |
| authorships[1].author.display_name | Sachin Sharma |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I875944469 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of CSE, Koneru Lakshmaiah Education Foundation, Vijaywada 522502, Andhra Pradesh, India |
| authorships[1].institutions[0].id | https://openalex.org/I875944469 |
| authorships[1].institutions[0].ror | https://ror.org/02k949197 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I875944469 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Koneru Lakshmaiah Education Foundation |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sachin Sharma |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of CSE, Koneru Lakshmaiah Education Foundation, Vijaywada 522502, Andhra Pradesh, India |
| authorships[2].author.id | https://openalex.org/A5009473482 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1919-3407 |
| authorships[2].author.display_name | Mueen Uddin |
| authorships[2].countries | QA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210105992 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Computing and Information Technology, University of Doha for Science and Technology, Doha 24449, Qatar |
| authorships[2].institutions[0].id | https://openalex.org/I4210105992 |
| authorships[2].institutions[0].ror | https://ror.org/01gshyb58 |
| authorships[2].institutions[0].type | archive |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210105992 |
| authorships[2].institutions[0].country_code | QA |
| authorships[2].institutions[0].display_name | Qatar Science and Technology Park |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mueen Uddin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Computing and Information Technology, University of Doha for Science and Technology, Doha 24449, Qatar |
| authorships[3].author.id | https://openalex.org/A5101689181 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4958-2043 |
| authorships[3].author.display_name | Chin‐Ling Chen |
| authorships[3].countries | CN, TW |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I75867142 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I49232843 |
| authorships[3].affiliations[1].raw_affiliation_string | School of Information Engineering, Changchun Sci-Tech University, Changchun 130600, China |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I126145234 |
| authorships[3].affiliations[2].raw_affiliation_string | Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung 41349, Taiwan |
| authorships[3].institutions[0].id | https://openalex.org/I49232843 |
| authorships[3].institutions[0].ror | https://ror.org/02an57k10 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I49232843 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Changchun University |
| authorships[3].institutions[1].id | https://openalex.org/I75867142 |
| authorships[3].institutions[1].ror | https://ror.org/01285e189 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I75867142 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Xiamen University of Technology |
| authorships[3].institutions[2].id | https://openalex.org/I126145234 |
| authorships[3].institutions[2].ror | https://ror.org/04xwksx09 |
| authorships[3].institutions[2].type | education |
| authorships[3].institutions[2].lineage | https://openalex.org/I126145234 |
| authorships[3].institutions[2].country_code | TW |
| authorships[3].institutions[2].display_name | Chaoyang University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chin-Ling Chen |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung 41349, Taiwan, School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China, School of Information Engineering, Changchun Sci-Tech University, Changchun 130600, China |
| authorships[4].author.id | https://openalex.org/A5113864647 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Chih-Ming Wu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I75867142 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Civil Engineering and Architecture, Xiamen University of Technology, Xiamen 361024, China |
| authorships[4].institutions[0].id | https://openalex.org/I75867142 |
| authorships[4].institutions[0].ror | https://ror.org/01285e189 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I75867142 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Xiamen University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chih-Ming Wu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Civil Engineering and Architecture, Xiamen University of Technology, Xiamen 361024, China |
| authorships[5].author.id | https://openalex.org/A5011680983 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3805-486X |
| authorships[5].author.display_name | Punit Soni |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I101407740 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of CSE, Chandigarh University, Mohali 140413, Punjab, India |
| authorships[5].institutions[0].id | https://openalex.org/I101407740 |
| authorships[5].institutions[0].ror | https://ror.org/05t4pvx35 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I101407740 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Chandigarh University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Punit Soni |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of CSE, Chandigarh University, Mohali 140413, Punjab, India |
| authorships[6].author.id | https://openalex.org/A5021652033 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5932-0581 |
| authorships[6].author.display_name | Shikha Chaudhary |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I73779912 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Computing and IT, Manipal University Jaipur, Jaipur 303007, Rajasthan, India |
| authorships[6].institutions[0].id | https://openalex.org/I73779912 |
| authorships[6].institutions[0].ror | https://ror.org/040h76494 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I73779912 |
| authorships[6].institutions[0].country_code | |
| authorships[6].institutions[0].display_name | Manipal University Jaipur |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Shikha Chaudhary |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Computing and IT, Manipal University Jaipur, Jaipur 303007, Rajasthan, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2071-1050/14/12/7222/pdf?version=1658817156 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-06-15T00:00:00 |
| display_name | Waste Classification for Sustainable Development Using Image Recognition with Deep Learning Neural Network Models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9937999844551086 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2366403280, https://openalex.org/W3176438653, https://openalex.org/W2981628807, https://openalex.org/W3012393889, https://openalex.org/W3189091156, https://openalex.org/W4386087993, https://openalex.org/W3014041368, https://openalex.org/W2510597476, https://openalex.org/W4285815841, https://openalex.org/W3193641238 |
| cited_by_count | 129 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 56 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 46 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 25 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/su14127222 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S10134376 |
| best_oa_location.source.issn | 2071-1050 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2071-1050 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Sustainability |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2071-1050/14/12/7222/pdf?version=1658817156 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sustainability |
| best_oa_location.landing_page_url | https://doi.org/10.3390/su14127222 |
| primary_location.id | doi:10.3390/su14127222 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S10134376 |
| primary_location.source.issn | 2071-1050 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2071-1050 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Sustainability |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2071-1050/14/12/7222/pdf?version=1658817156 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sustainability |
| primary_location.landing_page_url | https://doi.org/10.3390/su14127222 |
| publication_date | 2022-06-13 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W4200580899, https://openalex.org/W2906364343, https://openalex.org/W2039808907, https://openalex.org/W3080909375, https://openalex.org/W3200440946, https://openalex.org/W6782210461, https://openalex.org/W4205371632, https://openalex.org/W3196655424, https://openalex.org/W3007580262, https://openalex.org/W6804306413, https://openalex.org/W2944096107, https://openalex.org/W3017369949, https://openalex.org/W4238732474, https://openalex.org/W2946948417, https://openalex.org/W4205097308, https://openalex.org/W2194775991, https://openalex.org/W2549139847, https://openalex.org/W2752782242, https://openalex.org/W2964081807, https://openalex.org/W2259643685, https://openalex.org/W3205314666, https://openalex.org/W4213273672, https://openalex.org/W4200014076, https://openalex.org/W3083077635 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 21, 47, 140, 148, 156, 167, 200 |
| abstract_inverted_index.4X | 188 |
| abstract_inverted_index.B3 | 176 |
| abstract_inverted_index.In | 44 |
| abstract_inverted_index.It | 151 |
| abstract_inverted_index.an | 68, 105 |
| abstract_inverted_index.as | 199 |
| abstract_inverted_index.by | 37, 96, 174 |
| abstract_inverted_index.in | 79, 111, 189, 196 |
| abstract_inverted_index.is | 5 |
| abstract_inverted_index.it | 194 |
| abstract_inverted_index.of | 3, 7, 11, 23, 52, 73, 107, 133, 163, 171, 187, 191, 202 |
| abstract_inverted_index.on | 101, 184 |
| abstract_inverted_index.so | 39 |
| abstract_inverted_index.to | 62, 109, 124, 161 |
| abstract_inverted_index.74% | 108 |
| abstract_inverted_index.84% | 110 |
| abstract_inverted_index.The | 0, 32, 83 |
| abstract_inverted_index.and | 103 |
| abstract_inverted_index.are | 91, 99 |
| abstract_inverted_index.far | 40 |
| abstract_inverted_index.for | 70, 86, 121, 128, 143, 147 |
| abstract_inverted_index.had | 158 |
| abstract_inverted_index.one | 6 |
| abstract_inverted_index.the | 8, 53, 71, 76, 80, 175, 179, 185 |
| abstract_inverted_index.was | 50, 88, 152 |
| abstract_inverted_index.This | 65, 115, 131 |
| abstract_inverted_index.been | 60 |
| abstract_inverted_index.bio, | 26 |
| abstract_inverted_index.deep | 55 |
| abstract_inverted_index.etc. | 31 |
| abstract_inverted_index.have | 59, 104 |
| abstract_inverted_index.into | 20, 75 |
| abstract_inverted_index.made | 51 |
| abstract_inverted_index.most | 33 |
| abstract_inverted_index.over | 113, 136, 204 |
| abstract_inverted_index.such | 155 |
| abstract_inverted_index.that | 58, 98, 154, 162 |
| abstract_inverted_index.this | 45 |
| abstract_inverted_index.type | 132 |
| abstract_inverted_index.used | 85 |
| abstract_inverted_index.with | 166 |
| abstract_inverted_index.(MSW) | 17 |
| abstract_inverted_index.Solid | 15 |
| abstract_inverted_index.These | 90 |
| abstract_inverted_index.Thus, | 178 |
| abstract_inverted_index.Waste | 16 |
| abstract_inverted_index.based | 93 |
| abstract_inverted_index.model | 119, 134, 142, 157 |
| abstract_inverted_index.order | 186 |
| abstract_inverted_index.paper | 66 |
| abstract_inverted_index.shown | 153 |
| abstract_inverted_index.terms | 190 |
| abstract_inverted_index.top-1 | 112 |
| abstract_inverted_index.waste | 4 |
| abstract_inverted_index.FLOPS. | 192 |
| abstract_inverted_index.Google | 97 |
| abstract_inverted_index.glass, | 28 |
| abstract_inverted_index.highly | 145 |
| abstract_inverted_index.images | 122 |
| abstract_inverted_index.litter | 74, 207 |
| abstract_inverted_index.metal, | 29 |
| abstract_inverted_index.model. | 177 |
| abstract_inverted_index.models | 94 |
| abstract_inverted_index.modern | 12 |
| abstract_inverted_index.neural | 42 |
| abstract_inverted_index.number | 22, 170 |
| abstract_inverted_index.paper, | 30, 46 |
| abstract_inverted_index.proper | 1 |
| abstract_inverted_index.result | 201 |
| abstract_inverted_index.tuning | 120, 135 |
| abstract_inverted_index.types, | 24 |
| abstract_inverted_index.waste. | 64 |
| abstract_inverted_index.biggest | 9 |
| abstract_inverted_index.images. | 208 |
| abstract_inverted_index.include | 41 |
| abstract_inverted_index.region. | 150 |
| abstract_inverted_index.regions | 127 |
| abstract_inverted_index.smaller | 169 |
| abstract_inverted_index.ImageNet | 102 |
| abstract_inverted_index.accuracy | 106, 160 |
| abstract_inverted_index.achieved | 182 |
| abstract_inverted_index.classify | 63 |
| abstract_inverted_index.detailed | 48 |
| abstract_inverted_index.existing | 54 |
| abstract_inverted_index.handling | 2 |
| abstract_inverted_index.however, | 165 |
| abstract_inverted_index.learning | 56, 138 |
| abstract_inverted_index.plastic, | 27 |
| abstract_inverted_index.proposed | 36, 61, 95, 180 |
| abstract_inverted_index.proposes | 67, 117 |
| abstract_inverted_index.provides | 139 |
| abstract_inverted_index.required | 173 |
| abstract_inverted_index.requires | 18 |
| abstract_inverted_index.research | 116 |
| abstract_inverted_index.resulted | 195 |
| abstract_inverted_index.society. | 13 |
| abstract_inverted_index.specific | 123, 206 |
| abstract_inverted_index.transfer | 137 |
| abstract_inverted_index.ImageNet. | 114 |
| abstract_inverted_index.Moreover, | 193 |
| abstract_inverted_index.Municipal | 14 |
| abstract_inverted_index.benchmark | 81 |
| abstract_inverted_index.efficient | 34, 129 |
| abstract_inverted_index.including | 25 |
| abstract_inverted_index.networks. | 43 |
| abstract_inverted_index.optimized | 146 |
| abstract_inverted_index.specified | 78 |
| abstract_inverted_index.technique | 181 |
| abstract_inverted_index.categories | 77 |
| abstract_inverted_index.challenges | 10 |
| abstract_inverted_index.comparable | 159 |
| abstract_inverted_index.customized | 141 |
| abstract_inverted_index.efficiency | 183 |
| abstract_inverted_index.improvised | 197 |
| abstract_inverted_index.parameters | 172 |
| abstract_inverted_index.particular | 125, 149 |
| abstract_inverted_index.pretrained | 100 |
| abstract_inverted_index.techniques | 35, 57 |
| abstract_inverted_index.approaches. | 82 |
| abstract_inverted_index.demographic | 126 |
| abstract_inverted_index.fine-tuning | 203 |
| abstract_inverted_index.region-wise | 205 |
| abstract_inverted_index.researchers | 38 |
| abstract_inverted_index.architecture | 69, 84 |
| abstract_inverted_index.significantly | 168 |
| abstract_inverted_index.summarization | 49 |
| abstract_inverted_index.categorization | 19 |
| abstract_inverted_index.classification | 72, 87 |
| abstract_inverted_index.EfficientNet-B0 | 118 |
| abstract_inverted_index.classification, | 144 |
| abstract_inverted_index.classification. | 130 |
| abstract_inverted_index.classifications | 198 |
| abstract_inverted_index.EfficientNet-B0. | 89 |
| abstract_inverted_index.EfficientNet-B3, | 164 |
| abstract_inverted_index.compound-scaling | 92 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5101689181, https://openalex.org/A5012364692 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I126145234, https://openalex.org/I49232843, https://openalex.org/I75867142, https://openalex.org/I875944469 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.99404699 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |