WaveFlow - Towards Integration of Ultrasound Processing with Deep Learning Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1811.01566
The ultimate goal of this work is a real-time processing framework for ultrasound image reconstruction augmented with machine learning. To attain this, we have implemented WaveFlow - a set of ultrasound data acquisition and processing tools for TensorFlow. WaveFlow includes: ultrasound Environments (connection points between the input raw ultrasound data source and TensorFlow) and signal processing Operators (ops) library. Raw data can be processed in real-time using algorithms available both in TensorFlow and WaveFlow. Currently, WaveFlow provides ops for B-mode image reconstruction (beamforming), signal processing and quantitative ultrasound. The ops were implemented both for the CPU and GPU, as well as for built-in automated tests and benchmarks. To demonstrate WaveFlow's performance, ultrasound data were acquired from wire and cyst phantoms and elaborated using selected sequences of the ops. We implemented and evaluated: Delay-and-Sum beamformer, synthetic transmit aperture imaging (STAI), plane-wave imaging (PWI), envelope detection algorithm and dynamic range clipping. The benchmarks were executed on the NVidia Titan X GPU integrated in the USPlatform research scanner (us4us Ltd., Poland). We achieved B-mode image reconstruction frame rates of 55 fps, 17 fps for the STAI and the PWI algorithms, respectively. The results showed the feasibility of real-time ultrasound image reconstruction using WaveFlow operators in the TensorFlow framework. WaveFlow source code can be found at github.com/waveflow-team/waveflow
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://arxiv.org/pdf/1811.01566
- OA Status
- green
- References
- 4
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2950113670
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2950113670Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1811.01566Digital Object Identifier
- Title
-
WaveFlow - Towards Integration of Ultrasound Processing with Deep LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-11-05Full publication date if available
- Authors
-
Piotr Jarosik, Michał Byra, Marcin LewandowskiList of authors in order
- Landing page
-
https://arxiv.org/pdf/1811.01566Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1811.01566Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Beamforming, Frame rate, Computer vision, Scanner, Synthetic aperture radar, Image processing, Clipping (morphology), Image (mathematics), Telecommunications, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
4Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2950113670 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1811.01566 |
| ids.doi | https://doi.org/10.48550/arxiv.1811.01566 |
| ids.mag | 2950113670 |
| ids.openalex | https://openalex.org/W2950113670 |
| fwci | |
| type | preprint |
| title | WaveFlow - Towards Integration of Ultrasound Processing with Deep Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10727 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Ultrasound Imaging and Elastography |
| topics[1].id | https://openalex.org/T10522 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9961000084877014 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Medical Imaging Techniques and Applications |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9936000108718872 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7376953363418579 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5665104389190674 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C54197355 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5628252029418945 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5782992 |
| concepts[2].display_name | Beamforming |
| concepts[3].id | https://openalex.org/C3261483 |
| concepts[3].level | 2 |
| concepts[3].score | 0.47088298201560974 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q119565 |
| concepts[3].display_name | Frame rate |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.45559051632881165 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C2779751349 |
| concepts[5].level | 2 |
| concepts[5].score | 0.44047749042510986 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1474480 |
| concepts[5].display_name | Scanner |
| concepts[6].id | https://openalex.org/C87360688 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4361336827278137 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q740686 |
| concepts[6].display_name | Synthetic aperture radar |
| concepts[7].id | https://openalex.org/C9417928 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4290485382080078 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[7].display_name | Image processing |
| concepts[8].id | https://openalex.org/C2776848632 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42872196435928345 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q853463 |
| concepts[8].display_name | Clipping (morphology) |
| concepts[9].id | https://openalex.org/C115961682 |
| concepts[9].level | 2 |
| concepts[9].score | 0.14551347494125366 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[9].display_name | Image (mathematics) |
| concepts[10].id | https://openalex.org/C76155785 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07906559109687805 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[10].display_name | Telecommunications |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| concepts[12].id | https://openalex.org/C41895202 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[12].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7376953363418579 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5665104389190674 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/beamforming |
| keywords[2].score | 0.5628252029418945 |
| keywords[2].display_name | Beamforming |
| keywords[3].id | https://openalex.org/keywords/frame-rate |
| keywords[3].score | 0.47088298201560974 |
| keywords[3].display_name | Frame rate |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.45559051632881165 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/scanner |
| keywords[5].score | 0.44047749042510986 |
| keywords[5].display_name | Scanner |
| keywords[6].id | https://openalex.org/keywords/synthetic-aperture-radar |
| keywords[6].score | 0.4361336827278137 |
| keywords[6].display_name | Synthetic aperture radar |
| keywords[7].id | https://openalex.org/keywords/image-processing |
| keywords[7].score | 0.4290485382080078 |
| keywords[7].display_name | Image processing |
| keywords[8].id | https://openalex.org/keywords/clipping |
| keywords[8].score | 0.42872196435928345 |
| keywords[8].display_name | Clipping (morphology) |
| keywords[9].id | https://openalex.org/keywords/image |
| keywords[9].score | 0.14551347494125366 |
| keywords[9].display_name | Image (mathematics) |
| keywords[10].id | https://openalex.org/keywords/telecommunications |
| keywords[10].score | 0.07906559109687805 |
| keywords[10].display_name | Telecommunications |
| language | en |
| locations[0].id | mag:2950113670 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | arXiv (Cornell University) |
| locations[0].landing_page_url | https://arxiv.org/pdf/1811.01566 |
| locations[1].id | doi:10.48550/arxiv.1811.01566 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1811.01566 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5016281068 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5198-5012 |
| authorships[0].author.display_name | Piotr Jarosik |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Information and Computational Science |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Piotr Jarosik |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Information and Computational Science |
| authorships[1].author.id | https://openalex.org/A5084262755 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5759-2516 |
| authorships[1].author.display_name | Michał Byra |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Ultrasound |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Michał Byra |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Ultrasound |
| authorships[2].author.id | https://openalex.org/A5014928358 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8668-8368 |
| authorships[2].author.display_name | Marcin Lewandowski |
| authorships[2].countries | PL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210119410 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Fundamental Technological Research PAS, Laboratory of Professional Electronics, Warsaw, Poland |
| authorships[2].institutions[0].id | https://openalex.org/I4210119410 |
| authorships[2].institutions[0].ror | https://ror.org/03fs4aq04 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210119410, https://openalex.org/I99542240 |
| authorships[2].institutions[0].country_code | PL |
| authorships[2].institutions[0].display_name | Institute of Fundamental Technological Research |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Marcin Lewandowski |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Fundamental Technological Research PAS, Laboratory of Professional Electronics, Warsaw, Poland |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1811.01566 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | WaveFlow - Towards Integration of Ultrasound Processing with Deep Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10727 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Ultrasound Imaging and Elastography |
| related_works | https://openalex.org/W2898681595, https://openalex.org/W2000109871, https://openalex.org/W1560068126, https://openalex.org/W1994095797, https://openalex.org/W2547105264, https://openalex.org/W2769521011, https://openalex.org/W2957071007, https://openalex.org/W1975838872, https://openalex.org/W2067358348, https://openalex.org/W2542614064, https://openalex.org/W2124313701, https://openalex.org/W2986906677, https://openalex.org/W2614623124, https://openalex.org/W1990663027, https://openalex.org/W2795292295, https://openalex.org/W2567579072, https://openalex.org/W2068498601, https://openalex.org/W2600534914, https://openalex.org/W2387957030, https://openalex.org/W2085505606 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | mag:2950113670 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | https://arxiv.org/pdf/1811.01566 |
| primary_location.id | mag:2950113670 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | arXiv (Cornell University) |
| primary_location.landing_page_url | https://arxiv.org/pdf/1811.01566 |
| publication_date | 2018-11-05 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2753605315, https://openalex.org/W2071924554, https://openalex.org/W2769165417, https://openalex.org/W2769435486 |
| referenced_works_count | 4 |
| abstract_inverted_index.- | 26 |
| abstract_inverted_index.X | 157 |
| abstract_inverted_index.a | 7, 27 |
| abstract_inverted_index.17 | 178 |
| abstract_inverted_index.55 | 176 |
| abstract_inverted_index.To | 19, 107 |
| abstract_inverted_index.We | 128, 168 |
| abstract_inverted_index.as | 98, 100 |
| abstract_inverted_index.at | 211 |
| abstract_inverted_index.be | 62, 209 |
| abstract_inverted_index.in | 64, 70, 160, 201 |
| abstract_inverted_index.is | 6 |
| abstract_inverted_index.of | 3, 29, 125, 175, 193 |
| abstract_inverted_index.on | 153 |
| abstract_inverted_index.we | 22 |
| abstract_inverted_index.CPU | 95 |
| abstract_inverted_index.GPU | 158 |
| abstract_inverted_index.PWI | 185 |
| abstract_inverted_index.Raw | 59 |
| abstract_inverted_index.The | 0, 88, 149, 188 |
| abstract_inverted_index.and | 33, 51, 53, 72, 85, 96, 105, 117, 120, 130, 145, 183 |
| abstract_inverted_index.can | 61, 208 |
| abstract_inverted_index.for | 11, 36, 78, 93, 101, 180 |
| abstract_inverted_index.fps | 179 |
| abstract_inverted_index.ops | 77, 89 |
| abstract_inverted_index.raw | 47 |
| abstract_inverted_index.set | 28 |
| abstract_inverted_index.the | 45, 94, 126, 154, 161, 181, 184, 191, 202 |
| abstract_inverted_index.GPU, | 97 |
| abstract_inverted_index.STAI | 182 |
| abstract_inverted_index.both | 69, 92 |
| abstract_inverted_index.code | 207 |
| abstract_inverted_index.cyst | 118 |
| abstract_inverted_index.data | 31, 49, 60, 112 |
| abstract_inverted_index.fps, | 177 |
| abstract_inverted_index.from | 115 |
| abstract_inverted_index.goal | 2 |
| abstract_inverted_index.have | 23 |
| abstract_inverted_index.ops. | 127 |
| abstract_inverted_index.this | 4 |
| abstract_inverted_index.well | 99 |
| abstract_inverted_index.were | 90, 113, 151 |
| abstract_inverted_index.wire | 116 |
| abstract_inverted_index.with | 16 |
| abstract_inverted_index.work | 5 |
| abstract_inverted_index.(ops) | 57 |
| abstract_inverted_index.Ltd., | 166 |
| abstract_inverted_index.Titan | 156 |
| abstract_inverted_index.found | 210 |
| abstract_inverted_index.frame | 173 |
| abstract_inverted_index.image | 13, 80, 171, 196 |
| abstract_inverted_index.input | 46 |
| abstract_inverted_index.range | 147 |
| abstract_inverted_index.rates | 174 |
| abstract_inverted_index.tests | 104 |
| abstract_inverted_index.this, | 21 |
| abstract_inverted_index.tools | 35 |
| abstract_inverted_index.using | 66, 122, 198 |
| abstract_inverted_index.(PWI), | 141 |
| abstract_inverted_index.(us4us | 165 |
| abstract_inverted_index.B-mode | 79, 170 |
| abstract_inverted_index.NVidia | 155 |
| abstract_inverted_index.attain | 20 |
| abstract_inverted_index.points | 43 |
| abstract_inverted_index.showed | 190 |
| abstract_inverted_index.signal | 54, 83 |
| abstract_inverted_index.source | 50, 206 |
| abstract_inverted_index.(STAI), | 138 |
| abstract_inverted_index.between | 44 |
| abstract_inverted_index.dynamic | 146 |
| abstract_inverted_index.imaging | 137, 140 |
| abstract_inverted_index.machine | 17 |
| abstract_inverted_index.results | 189 |
| abstract_inverted_index.scanner | 164 |
| abstract_inverted_index.Poland). | 167 |
| abstract_inverted_index.WaveFlow | 25, 38, 75, 199, 205 |
| abstract_inverted_index.achieved | 169 |
| abstract_inverted_index.acquired | 114 |
| abstract_inverted_index.aperture | 136 |
| abstract_inverted_index.built-in | 102 |
| abstract_inverted_index.envelope | 142 |
| abstract_inverted_index.executed | 152 |
| abstract_inverted_index.library. | 58 |
| abstract_inverted_index.phantoms | 119 |
| abstract_inverted_index.provides | 76 |
| abstract_inverted_index.research | 163 |
| abstract_inverted_index.selected | 123 |
| abstract_inverted_index.transmit | 135 |
| abstract_inverted_index.ultimate | 1 |
| abstract_inverted_index.Operators | 56 |
| abstract_inverted_index.WaveFlow. | 73 |
| abstract_inverted_index.algorithm | 144 |
| abstract_inverted_index.augmented | 15 |
| abstract_inverted_index.automated | 103 |
| abstract_inverted_index.available | 68 |
| abstract_inverted_index.clipping. | 148 |
| abstract_inverted_index.detection | 143 |
| abstract_inverted_index.framework | 10 |
| abstract_inverted_index.includes: | 39 |
| abstract_inverted_index.learning. | 18 |
| abstract_inverted_index.operators | 200 |
| abstract_inverted_index.processed | 63 |
| abstract_inverted_index.real-time | 8, 65, 194 |
| abstract_inverted_index.sequences | 124 |
| abstract_inverted_index.synthetic | 134 |
| abstract_inverted_index.Currently, | 74 |
| abstract_inverted_index.TensorFlow | 71, 203 |
| abstract_inverted_index.USPlatform | 162 |
| abstract_inverted_index.WaveFlow's | 109 |
| abstract_inverted_index.algorithms | 67 |
| abstract_inverted_index.benchmarks | 150 |
| abstract_inverted_index.elaborated | 121 |
| abstract_inverted_index.evaluated: | 131 |
| abstract_inverted_index.framework. | 204 |
| abstract_inverted_index.integrated | 159 |
| abstract_inverted_index.plane-wave | 139 |
| abstract_inverted_index.processing | 9, 34, 55, 84 |
| abstract_inverted_index.ultrasound | 12, 30, 40, 48, 111, 195 |
| abstract_inverted_index.(connection | 42 |
| abstract_inverted_index.TensorFlow) | 52 |
| abstract_inverted_index.TensorFlow. | 37 |
| abstract_inverted_index.acquisition | 32 |
| abstract_inverted_index.algorithms, | 186 |
| abstract_inverted_index.beamformer, | 133 |
| abstract_inverted_index.benchmarks. | 106 |
| abstract_inverted_index.demonstrate | 108 |
| abstract_inverted_index.feasibility | 192 |
| abstract_inverted_index.implemented | 24, 91, 129 |
| abstract_inverted_index.ultrasound. | 87 |
| abstract_inverted_index.Environments | 41 |
| abstract_inverted_index.performance, | 110 |
| abstract_inverted_index.quantitative | 86 |
| abstract_inverted_index.Delay-and-Sum | 132 |
| abstract_inverted_index.respectively. | 187 |
| abstract_inverted_index.(beamforming), | 82 |
| abstract_inverted_index.reconstruction | 14, 81, 172, 197 |
| abstract_inverted_index.github.com/waveflow-team/waveflow | 212 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |