Waveform Optimization and Analysis for Enhancing Transcranial Magnetic Stimulation Selectivity Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3618966
Transcranial magnetic stimulation (TMS) is a noninvasive technique that stimulates the brain via electric fields induced by pulsed currents in a coil. Beyond coil design, the pulse waveform also affects neuronal activation, though specific mechanisms remain unclear. A waveform optimization method is presented to improve stimulation selectivity, in which a multiscale model with realistic neuronal morphology quantifies the selectivity index, the stimulation waveform is parameterized for a pulse parameter controllable TMS discharge circuit, and particle swarm optimization is applied to refine the waveform parameters. Optimized waveforms show the potential to achieve higher selectivity than monophasic waveforms, which are known for relatively high selectivity. The results further show that waveform polarity, defined as the ratio of the positive to negative integrated areas of the stimulation waveform, plays a key role in selectivity across cortical layers. Other waveform parameters, such as the relative order and amplitude of induced electric field levels, may also affect selectivity, with their influence varying according to neuronal morphology and the local electric field distribution. The neuronal time constant also influences how waveform parameters affect stimulation selectivity. Furthermore, stronger polarity-selectivity correlations are often associated with greater alignment between selectivity and coil heating. The proposed method can enhance TMS selectivity by optimizing stimulation waveforms. The identified patterns may help explain variability in TMS outcomes across different waveforms and between individuals, and support the development of personalized designs that enhance stimulation efficacy while minimizing coil heating.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3618966
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4414908523
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414908523Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3618966Digital Object Identifier
- Title
-
Waveform Optimization and Analysis for Enhancing Transcranial Magnetic Stimulation SelectivityWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Ziqi Zhang, Hongfa Ding, Zhou He, S. S. Yu, Xiao Fang, Chuang Zhao, Dandi Zhang, Yingzhe LiuList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3618966Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3618966Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414908523 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3618966 |
| ids.doi | https://doi.org/10.1109/access.2025.3618966 |
| ids.openalex | https://openalex.org/W4414908523 |
| fwci | 0.0 |
| type | article |
| title | Waveform Optimization and Analysis for Enhancing Transcranial Magnetic Stimulation Selectivity |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 174882 |
| biblio.first_page | 174868 |
| topics[0].id | https://openalex.org/T10614 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9936000108718872 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Transcranial Magnetic Stimulation Studies |
| topics[1].id | https://openalex.org/T11840 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9567999839782715 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2703 |
| topics[1].subfield.display_name | Anesthesiology and Pain Medicine |
| topics[1].display_name | Pain Management and Treatment |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3618966 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3618966 |
| locations[1].id | pmh:oai:doaj.org/article:708bc2c0b8074f06b292ac2c6a565f24 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 174868-174882 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/708bc2c0b8074f06b292ac2c6a565f24 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100404388 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4185-5326 |
| authorships[0].author.display_name | Ziqi Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electrical and Electronic Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China |
| authorships[0].institutions[0].id | https://openalex.org/I47720641 |
| authorships[0].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ziqi Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electrical and Electronic Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China |
| authorships[1].author.id | https://openalex.org/A5019094181 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4123-8368 |
| authorships[1].author.display_name | Hongfa Ding |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electrical and Electronic Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China |
| authorships[1].institutions[0].id | https://openalex.org/I47720641 |
| authorships[1].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hongfa Ding |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Electrical and Electronic Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China |
| authorships[2].author.id | https://openalex.org/A5036705708 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7227-0155 |
| authorships[2].author.display_name | Zhou He |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I859038795 |
| authorships[2].affiliations[0].raw_affiliation_string | Bradley Department of Electrical and Computer Engineering, Center for Power Electronics Systems (CPES), Virginia Tech, Blacksburg, VA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I859038795 |
| authorships[2].institutions[0].ror | https://ror.org/02smfhw86 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I859038795 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Virginia Tech |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhou He |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Bradley Department of Electrical and Computer Engineering, Center for Power Electronics Systems (CPES), Virginia Tech, Blacksburg, VA, USA |
| authorships[3].author.id | https://openalex.org/A5047674337 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6011-8516 |
| authorships[3].author.display_name | S. S. Yu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China |
| authorships[3].institutions[0].id | https://openalex.org/I47720641 |
| authorships[3].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shuochun Yu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China |
| authorships[4].author.id | https://openalex.org/A5011028108 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8373-4074 |
| authorships[4].author.display_name | Xiao Fang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I31595395 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, China |
| authorships[4].institutions[0].id | https://openalex.org/I31595395 |
| authorships[4].institutions[0].ror | https://ror.org/05pejbw21 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I31595395 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chengdu University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xiao Fang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, China |
| authorships[5].author.id | https://openalex.org/A5102881974 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7308-4757 |
| authorships[5].author.display_name | Chuang Zhao |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Electrical and Electronic Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China |
| authorships[5].institutions[0].id | https://openalex.org/I47720641 |
| authorships[5].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chengyue Zhao |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Electrical and Electronic Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China |
| authorships[6].author.id | https://openalex.org/A5007992602 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5721-1410 |
| authorships[6].author.display_name | Dandi Zhang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Electrical and Electronic Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China |
| authorships[6].institutions[0].id | https://openalex.org/I47720641 |
| authorships[6].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Dandi Zhang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Electrical and Electronic Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China |
| authorships[7].author.id | https://openalex.org/A5107395052 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-8825-0308 |
| authorships[7].author.display_name | Yingzhe Liu |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Electrical and Electronic Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China |
| authorships[7].institutions[0].id | https://openalex.org/I47720641 |
| authorships[7].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Yingzhe Liu |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | School of Electrical and Electronic Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3618966 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Waveform Optimization and Analysis for Enhancing Transcranial Magnetic Stimulation Selectivity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10614 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9936000108718872 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Transcranial Magnetic Stimulation Studies |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3618966 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3618966 |
| primary_location.id | doi:10.1109/access.2025.3618966 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3618966 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 37 |
| abstract_inverted_index.a | 5, 20, 49, 66, 126 |
| abstract_inverted_index.as | 111, 138 |
| abstract_inverted_index.by | 16, 201 |
| abstract_inverted_index.in | 19, 47, 129, 212 |
| abstract_inverted_index.is | 4, 41, 63, 77 |
| abstract_inverted_index.of | 114, 121, 144, 225 |
| abstract_inverted_index.to | 43, 79, 89, 117, 158 |
| abstract_inverted_index.TMS | 70, 199, 213 |
| abstract_inverted_index.The | 103, 167, 194, 205 |
| abstract_inverted_index.and | 73, 142, 161, 191, 218, 221 |
| abstract_inverted_index.are | 97, 183 |
| abstract_inverted_index.can | 197 |
| abstract_inverted_index.for | 65, 99 |
| abstract_inverted_index.how | 173 |
| abstract_inverted_index.key | 127 |
| abstract_inverted_index.may | 149, 208 |
| abstract_inverted_index.the | 10, 25, 57, 60, 81, 87, 112, 115, 122, 139, 162, 223 |
| abstract_inverted_index.via | 12 |
| abstract_inverted_index.also | 28, 150, 171 |
| abstract_inverted_index.coil | 23, 192, 234 |
| abstract_inverted_index.help | 209 |
| abstract_inverted_index.high | 101 |
| abstract_inverted_index.role | 128 |
| abstract_inverted_index.show | 86, 106 |
| abstract_inverted_index.such | 137 |
| abstract_inverted_index.than | 93 |
| abstract_inverted_index.that | 8, 107, 228 |
| abstract_inverted_index.time | 169 |
| abstract_inverted_index.with | 52, 153, 186 |
| abstract_inverted_index.(TMS) | 3 |
| abstract_inverted_index.Other | 134 |
| abstract_inverted_index.areas | 120 |
| abstract_inverted_index.brain | 11 |
| abstract_inverted_index.coil. | 21 |
| abstract_inverted_index.field | 147, 165 |
| abstract_inverted_index.known | 98 |
| abstract_inverted_index.local | 163 |
| abstract_inverted_index.model | 51 |
| abstract_inverted_index.often | 184 |
| abstract_inverted_index.order | 141 |
| abstract_inverted_index.plays | 125 |
| abstract_inverted_index.pulse | 26, 67 |
| abstract_inverted_index.ratio | 113 |
| abstract_inverted_index.swarm | 75 |
| abstract_inverted_index.their | 154 |
| abstract_inverted_index.which | 48, 96 |
| abstract_inverted_index.while | 232 |
| abstract_inverted_index.Beyond | 22 |
| abstract_inverted_index.across | 131, 215 |
| abstract_inverted_index.affect | 151, 176 |
| abstract_inverted_index.fields | 14 |
| abstract_inverted_index.higher | 91 |
| abstract_inverted_index.index, | 59 |
| abstract_inverted_index.method | 40, 196 |
| abstract_inverted_index.pulsed | 17 |
| abstract_inverted_index.refine | 80 |
| abstract_inverted_index.remain | 35 |
| abstract_inverted_index.though | 32 |
| abstract_inverted_index.achieve | 90 |
| abstract_inverted_index.affects | 29 |
| abstract_inverted_index.applied | 78 |
| abstract_inverted_index.between | 189, 219 |
| abstract_inverted_index.defined | 110 |
| abstract_inverted_index.design, | 24 |
| abstract_inverted_index.designs | 227 |
| abstract_inverted_index.enhance | 198, 229 |
| abstract_inverted_index.explain | 210 |
| abstract_inverted_index.further | 105 |
| abstract_inverted_index.greater | 187 |
| abstract_inverted_index.improve | 44 |
| abstract_inverted_index.induced | 15, 145 |
| abstract_inverted_index.layers. | 133 |
| abstract_inverted_index.levels, | 148 |
| abstract_inverted_index.results | 104 |
| abstract_inverted_index.support | 222 |
| abstract_inverted_index.varying | 156 |
| abstract_inverted_index.circuit, | 72 |
| abstract_inverted_index.constant | 170 |
| abstract_inverted_index.cortical | 132 |
| abstract_inverted_index.currents | 18 |
| abstract_inverted_index.efficacy | 231 |
| abstract_inverted_index.electric | 13, 146, 164 |
| abstract_inverted_index.heating. | 193, 235 |
| abstract_inverted_index.magnetic | 1 |
| abstract_inverted_index.negative | 118 |
| abstract_inverted_index.neuronal | 30, 54, 159, 168 |
| abstract_inverted_index.outcomes | 214 |
| abstract_inverted_index.particle | 74 |
| abstract_inverted_index.patterns | 207 |
| abstract_inverted_index.positive | 116 |
| abstract_inverted_index.proposed | 195 |
| abstract_inverted_index.relative | 140 |
| abstract_inverted_index.specific | 33 |
| abstract_inverted_index.stronger | 180 |
| abstract_inverted_index.unclear. | 36 |
| abstract_inverted_index.waveform | 27, 38, 62, 82, 108, 135, 174 |
| abstract_inverted_index.Optimized | 84 |
| abstract_inverted_index.according | 157 |
| abstract_inverted_index.alignment | 188 |
| abstract_inverted_index.amplitude | 143 |
| abstract_inverted_index.different | 216 |
| abstract_inverted_index.discharge | 71 |
| abstract_inverted_index.influence | 155 |
| abstract_inverted_index.parameter | 68 |
| abstract_inverted_index.polarity, | 109 |
| abstract_inverted_index.potential | 88 |
| abstract_inverted_index.presented | 42 |
| abstract_inverted_index.realistic | 53 |
| abstract_inverted_index.technique | 7 |
| abstract_inverted_index.waveform, | 124 |
| abstract_inverted_index.waveforms | 85, 217 |
| abstract_inverted_index.associated | 185 |
| abstract_inverted_index.identified | 206 |
| abstract_inverted_index.influences | 172 |
| abstract_inverted_index.integrated | 119 |
| abstract_inverted_index.mechanisms | 34 |
| abstract_inverted_index.minimizing | 233 |
| abstract_inverted_index.monophasic | 94 |
| abstract_inverted_index.morphology | 55, 160 |
| abstract_inverted_index.multiscale | 50 |
| abstract_inverted_index.optimizing | 202 |
| abstract_inverted_index.parameters | 175 |
| abstract_inverted_index.quantifies | 56 |
| abstract_inverted_index.relatively | 100 |
| abstract_inverted_index.stimulates | 9 |
| abstract_inverted_index.waveforms, | 95 |
| abstract_inverted_index.waveforms. | 204 |
| abstract_inverted_index.activation, | 31 |
| abstract_inverted_index.development | 224 |
| abstract_inverted_index.noninvasive | 6 |
| abstract_inverted_index.parameters, | 136 |
| abstract_inverted_index.parameters. | 83 |
| abstract_inverted_index.selectivity | 58, 92, 130, 190, 200 |
| abstract_inverted_index.stimulation | 2, 45, 61, 123, 177, 203, 230 |
| abstract_inverted_index.variability | 211 |
| abstract_inverted_index.Furthermore, | 179 |
| abstract_inverted_index.Transcranial | 0 |
| abstract_inverted_index.controllable | 69 |
| abstract_inverted_index.correlations | 182 |
| abstract_inverted_index.individuals, | 220 |
| abstract_inverted_index.optimization | 39, 76 |
| abstract_inverted_index.personalized | 226 |
| abstract_inverted_index.selectivity, | 46, 152 |
| abstract_inverted_index.selectivity. | 102, 178 |
| abstract_inverted_index.distribution. | 166 |
| abstract_inverted_index.parameterized | 64 |
| abstract_inverted_index.polarity-selectivity | 181 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.57309942 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |