Weak Supervision Techniques towards Enhanced ASR Models in Industry-level CRM Systems Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.16843
In the design of customer relationship management (CRM) systems, accurately identifying customer types and offering personalized services are key to enhancing customer satisfaction and loyalty. However, this process faces the challenge of discerning customer voices and intentions, and general pre-trained automatic speech recognition (ASR) models make it difficult to effectively address industry-specific speech recognition tasks. To address this issue, we innovatively proposed a solution for fine-tuning industry-specific ASR models, which significantly improved the performance of the fine-tuned ASR models in industry applications. Experimental results show that our method substantially improves the crucial auxiliary role of the ASR model in industry CRM systems, and this approach has also been adopted in actual industrial applications.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.16843
- https://arxiv.org/pdf/2507.16843
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414877018
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414877018Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.16843Digital Object Identifier
- Title
-
Weak Supervision Techniques towards Enhanced ASR Models in Industry-level CRM SystemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-20Full publication date if available
- Authors
-
Zhongsheng Wang, Shuishu Wang, Jia Wang, Yanling Liang, Yuxi Zhang, Jing LiuList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.16843Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.16843Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.16843Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414877018 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.16843 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.16843 |
| ids.openalex | https://openalex.org/W4414877018 |
| fwci | |
| type | preprint |
| title | Weak Supervision Techniques towards Enhanced ASR Models in Industry-level CRM Systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12203 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8166000247001648 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Mobile Agent-Based Network Management |
| topics[1].id | https://openalex.org/T10679 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.8034999966621399 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Service-Oriented Architecture and Web Services |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.16843 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.16843 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.16843 |
| locations[1].id | doi:10.48550/arxiv.2507.16843 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.16843 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101473710 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8168-8307 |
| authorships[0].author.display_name | Zhongsheng Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Zhongsheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5069986210 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0865-4522 |
| authorships[1].author.display_name | Shuishu Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Sijie |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100404661 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7218-2224 |
| authorships[2].author.display_name | Jia Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Jia |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5042415642 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3114-4969 |
| authorships[3].author.display_name | Yanling Liang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liang, Yung-I |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100779765 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7567-1149 |
| authorships[4].author.display_name | Yuxi Zhang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhang, Yuxi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100374928 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7100-9078 |
| authorships[5].author.display_name | Jing Liu |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Liu, Jiamou |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.16843 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Weak Supervision Techniques towards Enhanced ASR Models in Industry-level CRM Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12203 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8166000247001648 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Mobile Agent-Based Network Management |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.16843 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.16843 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.16843 |
| primary_location.id | pmh:oai:arXiv.org:2507.16843 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.16843 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.16843 |
| publication_date | 2025-07-20 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 62 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 55 |
| abstract_inverted_index.in | 79, 98, 109 |
| abstract_inverted_index.it | 46 |
| abstract_inverted_index.of | 3, 31, 74, 94 |
| abstract_inverted_index.to | 19, 48 |
| abstract_inverted_index.we | 59 |
| abstract_inverted_index.ASR | 67, 77, 96 |
| abstract_inverted_index.CRM | 100 |
| abstract_inverted_index.and | 13, 23, 35, 37, 102 |
| abstract_inverted_index.are | 17 |
| abstract_inverted_index.for | 64 |
| abstract_inverted_index.has | 105 |
| abstract_inverted_index.key | 18 |
| abstract_inverted_index.our | 86 |
| abstract_inverted_index.the | 1, 29, 72, 75, 90, 95 |
| abstract_inverted_index.also | 106 |
| abstract_inverted_index.been | 107 |
| abstract_inverted_index.make | 45 |
| abstract_inverted_index.role | 93 |
| abstract_inverted_index.show | 84 |
| abstract_inverted_index.that | 85 |
| abstract_inverted_index.this | 26, 57, 103 |
| abstract_inverted_index.(ASR) | 43 |
| abstract_inverted_index.(CRM) | 7 |
| abstract_inverted_index.faces | 28 |
| abstract_inverted_index.model | 97 |
| abstract_inverted_index.types | 12 |
| abstract_inverted_index.which | 69 |
| abstract_inverted_index.actual | 110 |
| abstract_inverted_index.design | 2 |
| abstract_inverted_index.issue, | 58 |
| abstract_inverted_index.method | 87 |
| abstract_inverted_index.models | 44, 78 |
| abstract_inverted_index.speech | 41, 52 |
| abstract_inverted_index.tasks. | 54 |
| abstract_inverted_index.voices | 34 |
| abstract_inverted_index.address | 50, 56 |
| abstract_inverted_index.adopted | 108 |
| abstract_inverted_index.crucial | 91 |
| abstract_inverted_index.general | 38 |
| abstract_inverted_index.models, | 68 |
| abstract_inverted_index.process | 27 |
| abstract_inverted_index.results | 83 |
| abstract_inverted_index.However, | 25 |
| abstract_inverted_index.approach | 104 |
| abstract_inverted_index.customer | 4, 11, 21, 33 |
| abstract_inverted_index.improved | 71 |
| abstract_inverted_index.improves | 89 |
| abstract_inverted_index.industry | 80, 99 |
| abstract_inverted_index.loyalty. | 24 |
| abstract_inverted_index.offering | 14 |
| abstract_inverted_index.proposed | 61 |
| abstract_inverted_index.services | 16 |
| abstract_inverted_index.solution | 63 |
| abstract_inverted_index.systems, | 8, 101 |
| abstract_inverted_index.automatic | 40 |
| abstract_inverted_index.auxiliary | 92 |
| abstract_inverted_index.challenge | 30 |
| abstract_inverted_index.difficult | 47 |
| abstract_inverted_index.enhancing | 20 |
| abstract_inverted_index.accurately | 9 |
| abstract_inverted_index.discerning | 32 |
| abstract_inverted_index.fine-tuned | 76 |
| abstract_inverted_index.industrial | 111 |
| abstract_inverted_index.management | 6 |
| abstract_inverted_index.effectively | 49 |
| abstract_inverted_index.fine-tuning | 65 |
| abstract_inverted_index.identifying | 10 |
| abstract_inverted_index.intentions, | 36 |
| abstract_inverted_index.performance | 73 |
| abstract_inverted_index.pre-trained | 39 |
| abstract_inverted_index.recognition | 42, 53 |
| abstract_inverted_index.Experimental | 82 |
| abstract_inverted_index.innovatively | 60 |
| abstract_inverted_index.personalized | 15 |
| abstract_inverted_index.relationship | 5 |
| abstract_inverted_index.satisfaction | 22 |
| abstract_inverted_index.applications. | 81, 112 |
| abstract_inverted_index.significantly | 70 |
| abstract_inverted_index.substantially | 88 |
| abstract_inverted_index.industry-specific | 51, 66 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |