Weakly Supervised Convolutional Dictionary Learning for Multi-Label Classification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2503.08573
Convolutional Dictionary Learning (CDL) has emerged as a powerful approach for signal representation by learning translation-invariant features through convolution operations. While existing CDL methods are predominantly designed and used for fully supervised settings, many real-world classification tasks often rely on weakly labeled data, where only bag-level annotations are available. In this paper, we propose a novel weakly supervised convolutional dictionary learning framework that jointly learns shared and class-specific components, for multi-instance multi-label (MIML) classification where each example consists of multiple instances and may be associated with multiple labels. Our approach decomposes signals into background patterns captured by a shared dictionary and discriminative features encoded in class-specific dictionaries, with nuclear norm constraints preventing feature dilution. A Block Proximal Gradient method with Majorization (BPG-M) is developed to alternately update dictionary atoms and sparse coefficients, ensuring convergence to local minima. Furthermore, we incorporate a projection mechanism that aggregates instance-level predictions to bag-level labels through learnable pooling operators.Experimental results on both synthetic and real-world datasets demonstrate that our framework outperforms existing MIML methods in terms of classification performance, particularly in low-label regimes. The learned dictionaries provide interpretable representations while effectively handling background noise and variable-length instances, making the method suitable for applications such as environmental sound classification and RF signal analysis.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2503.08573
- https://arxiv.org/pdf/2503.08573
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415319845
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415319845Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2503.08573Digital Object Identifier
- Title
-
Weakly Supervised Convolutional Dictionary Learning for Multi-Label ClassificationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-11Full publication date if available
- Authors
-
Hao Chen, Daryl TanList of authors in order
- Landing page
-
https://arxiv.org/abs/2503.08573Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2503.08573Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2503.08573Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415319845 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2503.08573 |
| ids.doi | https://doi.org/10.48550/arxiv.2503.08573 |
| ids.openalex | https://openalex.org/W4415319845 |
| fwci | |
| type | preprint |
| title | Weakly Supervised Convolutional Dictionary Learning for Multi-Label Classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11550 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9854000210762024 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Text and Document Classification Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2503.08573 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2503.08573 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2503.08573 |
| locations[1].id | doi:10.48550/arxiv.2503.08573 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2503.08573 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100353666 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4542-8804 |
| authorships[0].author.display_name | Hao Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chen, Hao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5009336240 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2430-3308 |
| authorships[1].author.display_name | Daryl Tan |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Tan, Dayuan |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2503.08573 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-18T00:00:00 |
| display_name | Weakly Supervised Convolutional Dictionary Learning for Multi-Label Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11550 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9854000210762024 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Text and Document Classification Technologies |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2503.08573 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2503.08573 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2503.08573 |
| primary_location.id | pmh:oai:arXiv.org:2503.08573 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2503.08573 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2503.08573 |
| publication_date | 2025-03-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 114 |
| abstract_inverted_index.a | 7, 54, 97, 140 |
| abstract_inverted_index.In | 49 |
| abstract_inverted_index.RF | 204 |
| abstract_inverted_index.as | 6, 199 |
| abstract_inverted_index.be | 83 |
| abstract_inverted_index.by | 13, 96 |
| abstract_inverted_index.in | 104, 169, 175 |
| abstract_inverted_index.is | 122 |
| abstract_inverted_index.of | 78, 171 |
| abstract_inverted_index.on | 39, 155 |
| abstract_inverted_index.to | 124, 134, 147 |
| abstract_inverted_index.we | 52, 138 |
| abstract_inverted_index.CDL | 22 |
| abstract_inverted_index.Our | 88 |
| abstract_inverted_index.The | 178 |
| abstract_inverted_index.and | 27, 66, 81, 100, 129, 158, 189, 203 |
| abstract_inverted_index.are | 24, 47 |
| abstract_inverted_index.for | 10, 29, 69, 196 |
| abstract_inverted_index.has | 4 |
| abstract_inverted_index.may | 82 |
| abstract_inverted_index.our | 163 |
| abstract_inverted_index.the | 193 |
| abstract_inverted_index.MIML | 167 |
| abstract_inverted_index.both | 156 |
| abstract_inverted_index.each | 75 |
| abstract_inverted_index.into | 92 |
| abstract_inverted_index.many | 33 |
| abstract_inverted_index.norm | 109 |
| abstract_inverted_index.only | 44 |
| abstract_inverted_index.rely | 38 |
| abstract_inverted_index.such | 198 |
| abstract_inverted_index.that | 62, 143, 162 |
| abstract_inverted_index.this | 50 |
| abstract_inverted_index.used | 28 |
| abstract_inverted_index.with | 85, 107, 119 |
| abstract_inverted_index.(CDL) | 3 |
| abstract_inverted_index.Block | 115 |
| abstract_inverted_index.While | 20 |
| abstract_inverted_index.atoms | 128 |
| abstract_inverted_index.data, | 42 |
| abstract_inverted_index.fully | 30 |
| abstract_inverted_index.local | 135 |
| abstract_inverted_index.noise | 188 |
| abstract_inverted_index.novel | 55 |
| abstract_inverted_index.often | 37 |
| abstract_inverted_index.sound | 201 |
| abstract_inverted_index.tasks | 36 |
| abstract_inverted_index.terms | 170 |
| abstract_inverted_index.where | 43, 74 |
| abstract_inverted_index.while | 184 |
| abstract_inverted_index.(MIML) | 72 |
| abstract_inverted_index.labels | 149 |
| abstract_inverted_index.learns | 64 |
| abstract_inverted_index.making | 192 |
| abstract_inverted_index.method | 118, 194 |
| abstract_inverted_index.paper, | 51 |
| abstract_inverted_index.shared | 65, 98 |
| abstract_inverted_index.signal | 11, 205 |
| abstract_inverted_index.sparse | 130 |
| abstract_inverted_index.update | 126 |
| abstract_inverted_index.weakly | 40, 56 |
| abstract_inverted_index.(BPG-M) | 121 |
| abstract_inverted_index.emerged | 5 |
| abstract_inverted_index.encoded | 103 |
| abstract_inverted_index.example | 76 |
| abstract_inverted_index.feature | 112 |
| abstract_inverted_index.jointly | 63 |
| abstract_inverted_index.labeled | 41 |
| abstract_inverted_index.labels. | 87 |
| abstract_inverted_index.learned | 179 |
| abstract_inverted_index.methods | 23, 168 |
| abstract_inverted_index.minima. | 136 |
| abstract_inverted_index.nuclear | 108 |
| abstract_inverted_index.pooling | 152 |
| abstract_inverted_index.propose | 53 |
| abstract_inverted_index.provide | 181 |
| abstract_inverted_index.results | 154 |
| abstract_inverted_index.signals | 91 |
| abstract_inverted_index.through | 17, 150 |
| abstract_inverted_index.Gradient | 117 |
| abstract_inverted_index.Learning | 2 |
| abstract_inverted_index.Proximal | 116 |
| abstract_inverted_index.approach | 9, 89 |
| abstract_inverted_index.captured | 95 |
| abstract_inverted_index.consists | 77 |
| abstract_inverted_index.datasets | 160 |
| abstract_inverted_index.designed | 26 |
| abstract_inverted_index.ensuring | 132 |
| abstract_inverted_index.existing | 21, 166 |
| abstract_inverted_index.features | 16, 102 |
| abstract_inverted_index.handling | 186 |
| abstract_inverted_index.learning | 14, 60 |
| abstract_inverted_index.multiple | 79, 86 |
| abstract_inverted_index.patterns | 94 |
| abstract_inverted_index.powerful | 8 |
| abstract_inverted_index.regimes. | 177 |
| abstract_inverted_index.suitable | 195 |
| abstract_inverted_index.analysis. | 206 |
| abstract_inverted_index.bag-level | 45, 148 |
| abstract_inverted_index.developed | 123 |
| abstract_inverted_index.dilution. | 113 |
| abstract_inverted_index.framework | 61, 164 |
| abstract_inverted_index.instances | 80 |
| abstract_inverted_index.learnable | 151 |
| abstract_inverted_index.low-label | 176 |
| abstract_inverted_index.mechanism | 142 |
| abstract_inverted_index.settings, | 32 |
| abstract_inverted_index.synthetic | 157 |
| abstract_inverted_index.Dictionary | 1 |
| abstract_inverted_index.aggregates | 144 |
| abstract_inverted_index.associated | 84 |
| abstract_inverted_index.available. | 48 |
| abstract_inverted_index.background | 93, 187 |
| abstract_inverted_index.decomposes | 90 |
| abstract_inverted_index.dictionary | 59, 99, 127 |
| abstract_inverted_index.instances, | 191 |
| abstract_inverted_index.preventing | 111 |
| abstract_inverted_index.projection | 141 |
| abstract_inverted_index.real-world | 34, 159 |
| abstract_inverted_index.supervised | 31, 57 |
| abstract_inverted_index.alternately | 125 |
| abstract_inverted_index.annotations | 46 |
| abstract_inverted_index.components, | 68 |
| abstract_inverted_index.constraints | 110 |
| abstract_inverted_index.convergence | 133 |
| abstract_inverted_index.convolution | 18 |
| abstract_inverted_index.demonstrate | 161 |
| abstract_inverted_index.effectively | 185 |
| abstract_inverted_index.incorporate | 139 |
| abstract_inverted_index.multi-label | 71 |
| abstract_inverted_index.operations. | 19 |
| abstract_inverted_index.outperforms | 165 |
| abstract_inverted_index.predictions | 146 |
| abstract_inverted_index.Furthermore, | 137 |
| abstract_inverted_index.Majorization | 120 |
| abstract_inverted_index.applications | 197 |
| abstract_inverted_index.dictionaries | 180 |
| abstract_inverted_index.particularly | 174 |
| abstract_inverted_index.performance, | 173 |
| abstract_inverted_index.Convolutional | 0 |
| abstract_inverted_index.coefficients, | 131 |
| abstract_inverted_index.convolutional | 58 |
| abstract_inverted_index.dictionaries, | 106 |
| abstract_inverted_index.environmental | 200 |
| abstract_inverted_index.interpretable | 182 |
| abstract_inverted_index.predominantly | 25 |
| abstract_inverted_index.class-specific | 67, 105 |
| abstract_inverted_index.classification | 35, 73, 172, 202 |
| abstract_inverted_index.discriminative | 101 |
| abstract_inverted_index.instance-level | 145 |
| abstract_inverted_index.multi-instance | 70 |
| abstract_inverted_index.representation | 12 |
| abstract_inverted_index.representations | 183 |
| abstract_inverted_index.variable-length | 190 |
| abstract_inverted_index.translation-invariant | 15 |
| abstract_inverted_index.operators.Experimental | 153 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |