Weakly-Supervised Discovery of Geometry-Aware Representation for 3D Human Pose Estimation Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1903.08839
Recent studies have shown remarkable advances in 3D human pose estimation from monocular images, with the help of large-scale in-door 3D datasets and sophisticated network architectures. However, the generalizability to different environments remains an elusive goal. In this work, we propose a geometry-aware 3D representation for the human pose to address this limitation by using multiple views in a simple auto-encoder model at the training stage and only 2D keypoint information as supervision. A view synthesis framework is proposed to learn the shared 3D representation between viewpoints with synthesizing the human pose from one viewpoint to the other one. Instead of performing a direct transfer in the raw image-level, we propose a skeleton-based encoder-decoder mechanism to distil only pose-related representation in the latent space. A learning-based representation consistency constraint is further introduced to facilitate the robustness of latent 3D representation. Since the learnt representation encodes 3D geometry information, mapping it to 3D pose will be much easier than conventional frameworks that use an image or 2D coordinates as the input of 3D pose estimator. We demonstrate our approach on the task of 3D human pose estimation. Comprehensive experiments on three popular benchmarks show that our model can significantly improve the performance of state-of-the-art methods with simply injecting the representation as a robust 3D prior.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1903.08839
- https://arxiv.org/pdf/1903.08839
- OA Status
- green
- Cited By
- 42
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2924460655
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2924460655Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1903.08839Digital Object Identifier
- Title
-
Weakly-Supervised Discovery of Geometry-Aware Representation for 3D Human Pose EstimationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-03-21Full publication date if available
- Authors
-
Xipeng Chen, Kwan-Yee Lin, Wentao Liu, Chen Qian, Xiaogang Wang, Liang LinList of authors in order
- Landing page
-
https://arxiv.org/abs/1903.08839Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1903.08839Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1903.08839Direct OA link when available
- Concepts
-
Pose, Computer science, Artificial intelligence, Representation (politics), Robustness (evolution), Encoder, Computer vision, Feature learning, 3D pose estimation, Estimator, Leverage (statistics), Machine learning, Pattern recognition (psychology), Mathematics, Gene, Biochemistry, Law, Statistics, Political science, Chemistry, Operating system, PoliticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
42Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 3, 2022: 5, 2021: 13, 2020: 17, 2019: 4Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2924460655 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1903.08839 |
| ids.doi | https://doi.org/10.48550/arxiv.1903.08839 |
| ids.mag | 2924460655 |
| ids.openalex | https://openalex.org/W2924460655 |
| fwci | |
| type | preprint |
| title | Weakly-Supervised Discovery of Geometry-Aware Representation for 3D Human Pose Estimation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10812 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Human Pose and Action Recognition |
| topics[1].id | https://openalex.org/T10531 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9923999905586243 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Vision and Imaging |
| topics[2].id | https://openalex.org/T10331 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9919000267982483 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Video Surveillance and Tracking Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C52102323 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7913520336151123 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1671968 |
| concepts[0].display_name | Pose |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7562772035598755 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6533163785934448 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2776359362 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6166750192642212 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[3].display_name | Representation (politics) |
| concepts[4].id | https://openalex.org/C63479239 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6064194440841675 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[4].display_name | Robustness (evolution) |
| concepts[5].id | https://openalex.org/C118505674 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5432807207107544 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[5].display_name | Encoder |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.483716756105423 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C59404180 |
| concepts[7].level | 2 |
| concepts[7].score | 0.481777161359787 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[7].display_name | Feature learning |
| concepts[8].id | https://openalex.org/C36613465 |
| concepts[8].level | 3 |
| concepts[8].score | 0.44969943165779114 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4636322 |
| concepts[8].display_name | 3D pose estimation |
| concepts[9].id | https://openalex.org/C185429906 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4217146039009094 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[9].display_name | Estimator |
| concepts[10].id | https://openalex.org/C153083717 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4169348180294037 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[10].display_name | Leverage (statistics) |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3581651449203491 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.35185134410858154 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.16218918561935425 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C104317684 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[14].display_name | Gene |
| concepts[15].id | https://openalex.org/C55493867 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[15].display_name | Biochemistry |
| concepts[16].id | https://openalex.org/C199539241 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[16].display_name | Law |
| concepts[17].id | https://openalex.org/C105795698 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[17].display_name | Statistics |
| concepts[18].id | https://openalex.org/C17744445 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[18].display_name | Political science |
| concepts[19].id | https://openalex.org/C185592680 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[19].display_name | Chemistry |
| concepts[20].id | https://openalex.org/C111919701 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[20].display_name | Operating system |
| concepts[21].id | https://openalex.org/C94625758 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[21].display_name | Politics |
| keywords[0].id | https://openalex.org/keywords/pose |
| keywords[0].score | 0.7913520336151123 |
| keywords[0].display_name | Pose |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7562772035598755 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6533163785934448 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/representation |
| keywords[3].score | 0.6166750192642212 |
| keywords[3].display_name | Representation (politics) |
| keywords[4].id | https://openalex.org/keywords/robustness |
| keywords[4].score | 0.6064194440841675 |
| keywords[4].display_name | Robustness (evolution) |
| keywords[5].id | https://openalex.org/keywords/encoder |
| keywords[5].score | 0.5432807207107544 |
| keywords[5].display_name | Encoder |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.483716756105423 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/feature-learning |
| keywords[7].score | 0.481777161359787 |
| keywords[7].display_name | Feature learning |
| keywords[8].id | https://openalex.org/keywords/3d-pose-estimation |
| keywords[8].score | 0.44969943165779114 |
| keywords[8].display_name | 3D pose estimation |
| keywords[9].id | https://openalex.org/keywords/estimator |
| keywords[9].score | 0.4217146039009094 |
| keywords[9].display_name | Estimator |
| keywords[10].id | https://openalex.org/keywords/leverage |
| keywords[10].score | 0.4169348180294037 |
| keywords[10].display_name | Leverage (statistics) |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.3581651449203491 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.35185134410858154 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.16218918561935425 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1903.08839 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1903.08839 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1903.08839 |
| locations[1].id | doi:10.48550/arxiv.1903.08839 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1903.08839 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103099020 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-6635-7764 |
| authorships[0].author.display_name | Xipeng Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xipeng Chen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5046965918 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0175-6398 |
| authorships[1].author.display_name | Kwan-Yee Lin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kwan-Yee Lin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100451376 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6587-9878 |
| authorships[2].author.display_name | Wentao Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wentao Liu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100657544 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8761-5563 |
| authorships[3].author.display_name | Chen Qian |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chen Qian |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100444820 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7929-5889 |
| authorships[4].author.display_name | Xiaogang Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xiaogang Wang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100412937 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2248-3755 |
| authorships[5].author.display_name | Liang Lin |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Liang Lin |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1903.08839 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Weakly-Supervised Discovery of Geometry-Aware Representation for 3D Human Pose Estimation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10812 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Human Pose and Action Recognition |
| related_works | https://openalex.org/W4253893311, https://openalex.org/W3089306886, https://openalex.org/W2113785214, https://openalex.org/W2798721181, https://openalex.org/W3201205132, https://openalex.org/W4312694060, https://openalex.org/W4386075737, https://openalex.org/W4393563475, https://openalex.org/W4387967917, https://openalex.org/W4382141741 |
| cited_by_count | 42 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 13 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 17 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1903.08839 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1903.08839 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1903.08839 |
| primary_location.id | pmh:oai:arXiv.org:1903.08839 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1903.08839 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1903.08839 |
| publication_date | 2019-03-21 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2809334950, https://openalex.org/W2949678110, https://openalex.org/W2796350382, https://openalex.org/W2576289912, https://openalex.org/W2797184202, https://openalex.org/W2554247908, https://openalex.org/W2604375920, https://openalex.org/W2963355540, https://openalex.org/W2963598138, https://openalex.org/W2963419579, https://openalex.org/W2737009841, https://openalex.org/W1776042733, https://openalex.org/W2803914169, https://openalex.org/W2784125538, https://openalex.org/W2952270885, https://openalex.org/W2483862638, https://openalex.org/W2810607340, https://openalex.org/W2188956040, https://openalex.org/W2798646183, https://openalex.org/W2964105113, https://openalex.org/W2774618166, https://openalex.org/W2583372902, https://openalex.org/W2950977907, https://openalex.org/W2964016027, https://openalex.org/W2793814912, https://openalex.org/W2307770531, https://openalex.org/W2585185777, https://openalex.org/W2951004968, https://openalex.org/W2963753007, https://openalex.org/W2949396488, https://openalex.org/W2551540143, https://openalex.org/W2101032778, https://openalex.org/W2910805834, https://openalex.org/W2798998662, https://openalex.org/W2519469348, https://openalex.org/W2795942369, https://openalex.org/W2557698284, https://openalex.org/W2789129057, https://openalex.org/W2798404873, https://openalex.org/W2952069407, https://openalex.org/W1967554269, https://openalex.org/W2797784912, https://openalex.org/W2953333925 |
| referenced_works_count | 43 |
| abstract_inverted_index.A | 73, 124 |
| abstract_inverted_index.a | 41, 58, 102, 111, 210 |
| abstract_inverted_index.2D | 68, 165 |
| abstract_inverted_index.3D | 7, 20, 43, 83, 138, 145, 151, 171, 182, 212 |
| abstract_inverted_index.In | 36 |
| abstract_inverted_index.We | 174 |
| abstract_inverted_index.an | 33, 162 |
| abstract_inverted_index.as | 71, 167, 209 |
| abstract_inverted_index.at | 62 |
| abstract_inverted_index.be | 154 |
| abstract_inverted_index.by | 53 |
| abstract_inverted_index.in | 6, 57, 105, 120 |
| abstract_inverted_index.is | 77, 129 |
| abstract_inverted_index.it | 149 |
| abstract_inverted_index.of | 17, 100, 136, 170, 181, 201 |
| abstract_inverted_index.on | 178, 188 |
| abstract_inverted_index.or | 164 |
| abstract_inverted_index.to | 29, 49, 79, 95, 115, 132, 150 |
| abstract_inverted_index.we | 39, 109 |
| abstract_inverted_index.and | 22, 66 |
| abstract_inverted_index.can | 196 |
| abstract_inverted_index.for | 45 |
| abstract_inverted_index.one | 93 |
| abstract_inverted_index.our | 176, 194 |
| abstract_inverted_index.raw | 107 |
| abstract_inverted_index.the | 15, 27, 46, 63, 81, 89, 96, 106, 121, 134, 141, 168, 179, 199, 207 |
| abstract_inverted_index.use | 161 |
| abstract_inverted_index.from | 11, 92 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.help | 16 |
| abstract_inverted_index.much | 155 |
| abstract_inverted_index.one. | 98 |
| abstract_inverted_index.only | 67, 117 |
| abstract_inverted_index.pose | 9, 48, 91, 152, 172, 184 |
| abstract_inverted_index.show | 192 |
| abstract_inverted_index.task | 180 |
| abstract_inverted_index.than | 157 |
| abstract_inverted_index.that | 160, 193 |
| abstract_inverted_index.this | 37, 51 |
| abstract_inverted_index.view | 74 |
| abstract_inverted_index.will | 153 |
| abstract_inverted_index.with | 14, 87, 204 |
| abstract_inverted_index.Since | 140 |
| abstract_inverted_index.goal. | 35 |
| abstract_inverted_index.human | 8, 47, 90, 183 |
| abstract_inverted_index.image | 163 |
| abstract_inverted_index.input | 169 |
| abstract_inverted_index.learn | 80 |
| abstract_inverted_index.model | 61, 195 |
| abstract_inverted_index.other | 97 |
| abstract_inverted_index.shown | 3 |
| abstract_inverted_index.stage | 65 |
| abstract_inverted_index.three | 189 |
| abstract_inverted_index.using | 54 |
| abstract_inverted_index.views | 56 |
| abstract_inverted_index.work, | 38 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.direct | 103 |
| abstract_inverted_index.distil | 116 |
| abstract_inverted_index.easier | 156 |
| abstract_inverted_index.latent | 122, 137 |
| abstract_inverted_index.learnt | 142 |
| abstract_inverted_index.prior. | 213 |
| abstract_inverted_index.robust | 211 |
| abstract_inverted_index.shared | 82 |
| abstract_inverted_index.simple | 59 |
| abstract_inverted_index.simply | 205 |
| abstract_inverted_index.space. | 123 |
| abstract_inverted_index.Instead | 99 |
| abstract_inverted_index.address | 50 |
| abstract_inverted_index.between | 85 |
| abstract_inverted_index.elusive | 34 |
| abstract_inverted_index.encodes | 144 |
| abstract_inverted_index.further | 130 |
| abstract_inverted_index.images, | 13 |
| abstract_inverted_index.improve | 198 |
| abstract_inverted_index.in-door | 19 |
| abstract_inverted_index.mapping | 148 |
| abstract_inverted_index.methods | 203 |
| abstract_inverted_index.network | 24 |
| abstract_inverted_index.popular | 190 |
| abstract_inverted_index.propose | 40, 110 |
| abstract_inverted_index.remains | 32 |
| abstract_inverted_index.studies | 1 |
| abstract_inverted_index.However, | 26 |
| abstract_inverted_index.advances | 5 |
| abstract_inverted_index.approach | 177 |
| abstract_inverted_index.datasets | 21 |
| abstract_inverted_index.geometry | 146 |
| abstract_inverted_index.keypoint | 69 |
| abstract_inverted_index.multiple | 55 |
| abstract_inverted_index.proposed | 78 |
| abstract_inverted_index.training | 64 |
| abstract_inverted_index.transfer | 104 |
| abstract_inverted_index.different | 30 |
| abstract_inverted_index.framework | 76 |
| abstract_inverted_index.injecting | 206 |
| abstract_inverted_index.mechanism | 114 |
| abstract_inverted_index.monocular | 12 |
| abstract_inverted_index.synthesis | 75 |
| abstract_inverted_index.viewpoint | 94 |
| abstract_inverted_index.benchmarks | 191 |
| abstract_inverted_index.constraint | 128 |
| abstract_inverted_index.estimation | 10 |
| abstract_inverted_index.estimator. | 173 |
| abstract_inverted_index.facilitate | 133 |
| abstract_inverted_index.frameworks | 159 |
| abstract_inverted_index.introduced | 131 |
| abstract_inverted_index.limitation | 52 |
| abstract_inverted_index.performing | 101 |
| abstract_inverted_index.remarkable | 4 |
| abstract_inverted_index.robustness | 135 |
| abstract_inverted_index.viewpoints | 86 |
| abstract_inverted_index.consistency | 127 |
| abstract_inverted_index.coordinates | 166 |
| abstract_inverted_index.demonstrate | 175 |
| abstract_inverted_index.estimation. | 185 |
| abstract_inverted_index.experiments | 187 |
| abstract_inverted_index.information | 70 |
| abstract_inverted_index.large-scale | 18 |
| abstract_inverted_index.performance | 200 |
| abstract_inverted_index.auto-encoder | 60 |
| abstract_inverted_index.conventional | 158 |
| abstract_inverted_index.environments | 31 |
| abstract_inverted_index.image-level, | 108 |
| abstract_inverted_index.information, | 147 |
| abstract_inverted_index.pose-related | 118 |
| abstract_inverted_index.supervision. | 72 |
| abstract_inverted_index.synthesizing | 88 |
| abstract_inverted_index.Comprehensive | 186 |
| abstract_inverted_index.significantly | 197 |
| abstract_inverted_index.sophisticated | 23 |
| abstract_inverted_index.architectures. | 25 |
| abstract_inverted_index.geometry-aware | 42 |
| abstract_inverted_index.learning-based | 125 |
| abstract_inverted_index.representation | 44, 84, 119, 126, 143, 208 |
| abstract_inverted_index.skeleton-based | 112 |
| abstract_inverted_index.encoder-decoder | 113 |
| abstract_inverted_index.representation. | 139 |
| abstract_inverted_index.generalizability | 28 |
| abstract_inverted_index.state-of-the-art | 202 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |