Wearable Sensor-Based Human Activity Recognition Using Hybrid Deep Learning Techniques Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1155/2020/2132138
Human activity recognition (HAR) can be exploited to great benefits in many applications, including elder care, health care, rehabilitation, entertainment, and monitoring. Many existing techniques, such as deep learning, have been developed for specific activity recognition, but little for the recognition of the transitions between activities. This work proposes a deep learning based scheme that can recognize both specific activities and the transitions between two different activities of short duration and low frequency for health care applications. In this work, we first build a deep convolutional neural network (CNN) for extracting features from the data collected by sensors. Then, the long short-term memory (LTSM) network is used to capture long-term dependencies between two actions to further improve the HAR identification rate. By combing CNN and LSTM, a wearable sensor based model is proposed that can accurately recognize activities and their transitions. The experimental results show that the proposed approach can help improve the recognition rate up to 95.87% and the recognition rate for transitions higher than 80%, which are better than those of most existing similar models over the open HAPT dataset.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2020/2132138
- https://downloads.hindawi.com/journals/scn/2020/2132138.pdf
- OA Status
- hybrid
- Cited By
- 111
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3044454104
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3044454104Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2020/2132138Digital Object Identifier
- Title
-
Wearable Sensor-Based Human Activity Recognition Using Hybrid Deep Learning TechniquesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-07-27Full publication date if available
- Authors
-
Huaijun Wang, Jing Zhao, Junhuai Li, Ling Tian, Pengjia Tu, Ting Cao, Yang An, Kan Wang, Shancang LiList of authors in order
- Landing page
-
https://doi.org/10.1155/2020/2132138Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/scn/2020/2132138.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/scn/2020/2132138.pdfDirect OA link when available
- Concepts
-
Computer science, Activity recognition, Convolutional neural network, Deep learning, Wearable computer, Artificial intelligence, Machine learning, Wearable technology, Identification (biology), Embedded system, Botany, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
111Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 13, 2024: 23, 2023: 29, 2022: 25, 2021: 20Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3044454104 |
|---|---|
| doi | https://doi.org/10.1155/2020/2132138 |
| ids.doi | https://doi.org/10.1155/2020/2132138 |
| ids.mag | 3044454104 |
| ids.openalex | https://openalex.org/W3044454104 |
| fwci | 7.87254884 |
| type | article |
| title | Wearable Sensor-Based Human Activity Recognition Using Hybrid Deep Learning Techniques |
| awards[0].id | https://openalex.org/G4492457775 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2017YFB1402103 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G5195665440 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2018HJCG-05 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G4366813337 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 201805037YD15CG214 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| awards[3].id | https://openalex.org/G3134235651 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 61971347 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 2020 |
| biblio.last_page | 12 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10444 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Context-Aware Activity Recognition Systems |
| topics[1].id | https://openalex.org/T10812 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9796000123023987 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Human Pose and Action Recognition |
| topics[2].id | https://openalex.org/T12740 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9688000082969666 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Gait Recognition and Analysis |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2100 |
| apc_list.currency | USD |
| apc_list.value_usd | 2100 |
| apc_paid.value | 2100 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2100 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8857887387275696 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C121687571 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7903475761413574 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4677630 |
| concepts[1].display_name | Activity recognition |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6884289383888245 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6846361756324768 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C150594956 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6579647660255432 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1334829 |
| concepts[4].display_name | Wearable computer |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.6018209457397461 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4973154366016388 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C54290928 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4599953889846802 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4845080 |
| concepts[7].display_name | Wearable technology |
| concepts[8].id | https://openalex.org/C116834253 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4152480363845825 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[8].display_name | Identification (biology) |
| concepts[9].id | https://openalex.org/C149635348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0958409309387207 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[9].display_name | Embedded system |
| concepts[10].id | https://openalex.org/C59822182 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[10].display_name | Botany |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8857887387275696 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/activity-recognition |
| keywords[1].score | 0.7903475761413574 |
| keywords[1].display_name | Activity recognition |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.6884289383888245 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.6846361756324768 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/wearable-computer |
| keywords[4].score | 0.6579647660255432 |
| keywords[4].display_name | Wearable computer |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.6018209457397461 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.4973154366016388 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/wearable-technology |
| keywords[7].score | 0.4599953889846802 |
| keywords[7].display_name | Wearable technology |
| keywords[8].id | https://openalex.org/keywords/identification |
| keywords[8].score | 0.4152480363845825 |
| keywords[8].display_name | Identification (biology) |
| keywords[9].id | https://openalex.org/keywords/embedded-system |
| keywords[9].score | 0.0958409309387207 |
| keywords[9].display_name | Embedded system |
| language | en |
| locations[0].id | doi:10.1155/2020/2132138 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S120683614 |
| locations[0].source.issn | 1939-0114, 1939-0122 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1939-0114 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Security and Communication Networks |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/scn/2020/2132138.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Security and Communication Networks |
| locations[0].landing_page_url | https://doi.org/10.1155/2020/2132138 |
| locations[1].id | pmh:oai:doaj.org/article:863ac0f74be942aeb2dc40c3c09be427 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Security and Communication Networks, Vol 2020 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/863ac0f74be942aeb2dc40c3c09be427 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5069263111 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2933-6566 |
| authorships[0].author.display_name | Huaijun Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].raw_affiliation_string | Shaanxi Key Laboratory for Network Computing and Security Technology, Xi’an 710048, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210131919 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[0].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xi'an University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huaijun Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China, Shaanxi Key Laboratory for Network Computing and Security Technology, Xi’an 710048, China |
| authorships[1].author.id | https://openalex.org/A5107342072 |
| authorships[1].author.orcid | https://orcid.org/0009-0006-6839-9355 |
| authorships[1].author.display_name | Jing Zhao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[1].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xi'an University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jing Zhao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China |
| authorships[2].author.id | https://openalex.org/A5046113804 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5483-5175 |
| authorships[2].author.display_name | Junhuai Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].raw_affiliation_string | Shaanxi Key Laboratory for Network Computing and Security Technology, Xi’an 710048, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210131919 |
| authorships[2].affiliations[1].raw_affiliation_string | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[2].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xi'an University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Junhuai Li |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China, Shaanxi Key Laboratory for Network Computing and Security Technology, Xi’an 710048, China |
| authorships[3].author.id | https://openalex.org/A5019111542 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8475-9203 |
| authorships[3].author.display_name | Ling Tian |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[3].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xi'an University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ling Tian |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China |
| authorships[4].author.id | https://openalex.org/A5019281332 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5517-8613 |
| authorships[4].author.display_name | Pengjia Tu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[4].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Xi'an University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Pengjia Tu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China |
| authorships[5].author.id | https://openalex.org/A5101945161 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7675-0882 |
| authorships[5].author.display_name | Ting Cao |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].raw_affiliation_string | Shaanxi Key Laboratory for Network Computing and Security Technology, Xi’an 710048, China |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I4210131919 |
| authorships[5].affiliations[1].raw_affiliation_string | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[5].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Xi'an University of Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ting Cao |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China, Shaanxi Key Laboratory for Network Computing and Security Technology, Xi’an 710048, China |
| authorships[6].author.id | https://openalex.org/A5100459627 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6529-1609 |
| authorships[6].author.display_name | Yang An |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[6].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Xi'an University of Technology |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Yang An |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China |
| authorships[7].author.id | https://openalex.org/A5100403727 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-3500-1073 |
| authorships[7].author.display_name | Kan Wang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].raw_affiliation_string | Shaanxi Key Laboratory for Network Computing and Security Technology, Xi’an 710048, China |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I4210131919 |
| authorships[7].affiliations[1].raw_affiliation_string | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China |
| authorships[7].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[7].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Xi'an University of Technology |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Kan Wang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China, Shaanxi Key Laboratory for Network Computing and Security Technology, Xi’an 710048, China |
| authorships[8].author.id | https://openalex.org/A5112604661 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-5663-7420 |
| authorships[8].author.display_name | Shancang Li |
| authorships[8].countries | GB |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I178535277 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Computer Science and Creative Technologies, UWE Bristol, Bristol BS16 1QY, UK |
| authorships[8].institutions[0].id | https://openalex.org/I178535277 |
| authorships[8].institutions[0].ror | https://ror.org/02nwg5t34 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I178535277 |
| authorships[8].institutions[0].country_code | GB |
| authorships[8].institutions[0].display_name | University of the West of England |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Shancang Li |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Computer Science and Creative Technologies, UWE Bristol, Bristol BS16 1QY, UK |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/scn/2020/2132138.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Wearable Sensor-Based Human Activity Recognition Using Hybrid Deep Learning Techniques |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10444 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Context-Aware Activity Recognition Systems |
| related_works | https://openalex.org/W4226493464, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3103566983, https://openalex.org/W2117913171, https://openalex.org/W3090300519, https://openalex.org/W2514492205, https://openalex.org/W4250401876, https://openalex.org/W2943851981, https://openalex.org/W2582769230 |
| cited_by_count | 111 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 13 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 23 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 29 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 25 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 20 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1155/2020/2132138 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S120683614 |
| best_oa_location.source.issn | 1939-0114, 1939-0122 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1939-0114 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Security and Communication Networks |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/scn/2020/2132138.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Security and Communication Networks |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2020/2132138 |
| primary_location.id | doi:10.1155/2020/2132138 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S120683614 |
| primary_location.source.issn | 1939-0114, 1939-0122 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1939-0114 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Security and Communication Networks |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/scn/2020/2132138.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Security and Communication Networks |
| primary_location.landing_page_url | https://doi.org/10.1155/2020/2132138 |
| publication_date | 2020-07-27 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2520936185, https://openalex.org/W2104696249, https://openalex.org/W2054780155, https://openalex.org/W2270470215, https://openalex.org/W2890377224, https://openalex.org/W2919115771, https://openalex.org/W1983364832, https://openalex.org/W2301384101, https://openalex.org/W2342792048, https://openalex.org/W2767979715, https://openalex.org/W2604630936, https://openalex.org/W2797770018, https://openalex.org/W2759690896, https://openalex.org/W2795342689, https://openalex.org/W2736191430, https://openalex.org/W2789027062, https://openalex.org/W2808791936, https://openalex.org/W2592284297, https://openalex.org/W2590106597, https://openalex.org/W2924536525, https://openalex.org/W2507653100, https://openalex.org/W2938260150, https://openalex.org/W2895429161, https://openalex.org/W2770265759, https://openalex.org/W3100139459 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 49, 83, 126 |
| abstract_inverted_index.By | 121 |
| abstract_inverted_index.In | 77 |
| abstract_inverted_index.as | 26 |
| abstract_inverted_index.be | 5 |
| abstract_inverted_index.by | 96 |
| abstract_inverted_index.in | 10 |
| abstract_inverted_index.is | 105, 131 |
| abstract_inverted_index.of | 41, 67, 172 |
| abstract_inverted_index.to | 7, 107, 114, 156 |
| abstract_inverted_index.up | 155 |
| abstract_inverted_index.we | 80 |
| abstract_inverted_index.CNN | 123 |
| abstract_inverted_index.HAR | 118 |
| abstract_inverted_index.The | 141 |
| abstract_inverted_index.and | 20, 60, 70, 124, 138, 158 |
| abstract_inverted_index.are | 168 |
| abstract_inverted_index.but | 36 |
| abstract_inverted_index.can | 4, 55, 134, 149 |
| abstract_inverted_index.for | 32, 38, 73, 89, 162 |
| abstract_inverted_index.low | 71 |
| abstract_inverted_index.the | 39, 42, 61, 93, 99, 117, 146, 152, 159, 178 |
| abstract_inverted_index.two | 64, 112 |
| abstract_inverted_index.80%, | 166 |
| abstract_inverted_index.HAPT | 180 |
| abstract_inverted_index.Many | 22 |
| abstract_inverted_index.This | 46 |
| abstract_inverted_index.been | 30 |
| abstract_inverted_index.both | 57 |
| abstract_inverted_index.care | 75 |
| abstract_inverted_index.data | 94 |
| abstract_inverted_index.deep | 27, 50, 84 |
| abstract_inverted_index.from | 92 |
| abstract_inverted_index.have | 29 |
| abstract_inverted_index.help | 150 |
| abstract_inverted_index.long | 100 |
| abstract_inverted_index.many | 11 |
| abstract_inverted_index.most | 173 |
| abstract_inverted_index.open | 179 |
| abstract_inverted_index.over | 177 |
| abstract_inverted_index.rate | 154, 161 |
| abstract_inverted_index.show | 144 |
| abstract_inverted_index.such | 25 |
| abstract_inverted_index.than | 165, 170 |
| abstract_inverted_index.that | 54, 133, 145 |
| abstract_inverted_index.this | 78 |
| abstract_inverted_index.used | 106 |
| abstract_inverted_index.work | 47 |
| abstract_inverted_index.(CNN) | 88 |
| abstract_inverted_index.(HAR) | 3 |
| abstract_inverted_index.Human | 0 |
| abstract_inverted_index.LSTM, | 125 |
| abstract_inverted_index.Then, | 98 |
| abstract_inverted_index.based | 52, 129 |
| abstract_inverted_index.build | 82 |
| abstract_inverted_index.care, | 15, 17 |
| abstract_inverted_index.elder | 14 |
| abstract_inverted_index.first | 81 |
| abstract_inverted_index.great | 8 |
| abstract_inverted_index.model | 130 |
| abstract_inverted_index.rate. | 120 |
| abstract_inverted_index.short | 68 |
| abstract_inverted_index.their | 139 |
| abstract_inverted_index.those | 171 |
| abstract_inverted_index.which | 167 |
| abstract_inverted_index.work, | 79 |
| abstract_inverted_index.(LTSM) | 103 |
| abstract_inverted_index.95.87% | 157 |
| abstract_inverted_index.better | 169 |
| abstract_inverted_index.health | 16, 74 |
| abstract_inverted_index.higher | 164 |
| abstract_inverted_index.little | 37 |
| abstract_inverted_index.memory | 102 |
| abstract_inverted_index.models | 176 |
| abstract_inverted_index.neural | 86 |
| abstract_inverted_index.scheme | 53 |
| abstract_inverted_index.sensor | 128 |
| abstract_inverted_index.actions | 113 |
| abstract_inverted_index.between | 44, 63, 111 |
| abstract_inverted_index.capture | 108 |
| abstract_inverted_index.combing | 122 |
| abstract_inverted_index.further | 115 |
| abstract_inverted_index.improve | 116, 151 |
| abstract_inverted_index.network | 87, 104 |
| abstract_inverted_index.results | 143 |
| abstract_inverted_index.similar | 175 |
| abstract_inverted_index.activity | 1, 34 |
| abstract_inverted_index.approach | 148 |
| abstract_inverted_index.benefits | 9 |
| abstract_inverted_index.dataset. | 181 |
| abstract_inverted_index.duration | 69 |
| abstract_inverted_index.existing | 23, 174 |
| abstract_inverted_index.features | 91 |
| abstract_inverted_index.learning | 51 |
| abstract_inverted_index.proposed | 132, 147 |
| abstract_inverted_index.proposes | 48 |
| abstract_inverted_index.sensors. | 97 |
| abstract_inverted_index.specific | 33, 58 |
| abstract_inverted_index.wearable | 127 |
| abstract_inverted_index.collected | 95 |
| abstract_inverted_index.developed | 31 |
| abstract_inverted_index.different | 65 |
| abstract_inverted_index.exploited | 6 |
| abstract_inverted_index.frequency | 72 |
| abstract_inverted_index.including | 13 |
| abstract_inverted_index.learning, | 28 |
| abstract_inverted_index.long-term | 109 |
| abstract_inverted_index.recognize | 56, 136 |
| abstract_inverted_index.accurately | 135 |
| abstract_inverted_index.activities | 59, 66, 137 |
| abstract_inverted_index.extracting | 90 |
| abstract_inverted_index.short-term | 101 |
| abstract_inverted_index.activities. | 45 |
| abstract_inverted_index.monitoring. | 21 |
| abstract_inverted_index.recognition | 2, 40, 153, 160 |
| abstract_inverted_index.techniques, | 24 |
| abstract_inverted_index.transitions | 43, 62, 163 |
| abstract_inverted_index.dependencies | 110 |
| abstract_inverted_index.experimental | 142 |
| abstract_inverted_index.recognition, | 35 |
| abstract_inverted_index.transitions. | 140 |
| abstract_inverted_index.applications, | 12 |
| abstract_inverted_index.applications. | 76 |
| abstract_inverted_index.convolutional | 85 |
| abstract_inverted_index.entertainment, | 19 |
| abstract_inverted_index.identification | 119 |
| abstract_inverted_index.rehabilitation, | 18 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5046113804 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I4210131919 |
| citation_normalized_percentile.value | 0.98003749 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |