Weather-Adaptive Multi-Step Forecasting of State of Polarization Changes in Aerial Fibers Using Wavelet Neural Networks Article Swipe
Khouloud Abdelli
,
Matteo Lonardi
,
J. Gripp
,
Samuel Olsson Fabien Boitier
,
Patricia Layec
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.03663
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.03663
We introduce a novel weather-adaptive approach for multi-step forecasting of multi-scale SOP changes in aerial fiber links. By harnessing the discrete wavelet transform and incorporating weather data, our approach improves forecasting accuracy by over 65% in RMSE and 63% in MAPE compared to baselines.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.03663
- https://arxiv.org/pdf/2409.03663
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403556743
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403556743Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.03663Digital Object Identifier
- Title
-
Weather-Adaptive Multi-Step Forecasting of State of Polarization Changes in Aerial Fibers Using Wavelet Neural NetworksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-05Full publication date if available
- Authors
-
Khouloud Abdelli, Matteo Lonardi, J. Gripp, Samuel Olsson Fabien Boitier, Patricia LayecList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.03663Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.03663Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.03663Direct OA link when available
- Concepts
-
Wavelet, Artificial neural network, Polarization (electrochemistry), Computer science, Artificial intelligence, Wavelet transform, Pattern recognition (psychology), Chemistry, Physical chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403556743 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.03663 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.03663 |
| ids.openalex | https://openalex.org/W4403556743 |
| fwci | |
| type | preprint |
| title | Weather-Adaptive Multi-Step Forecasting of State of Polarization Changes in Aerial Fibers Using Wavelet Neural Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10111 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9728999733924866 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Remote Sensing in Agriculture |
| topics[1].id | https://openalex.org/T11659 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9225000143051147 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Advanced Image Fusion Techniques |
| topics[2].id | https://openalex.org/T11164 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9114999771118164 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Remote Sensing and LiDAR Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C47432892 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6490383148193359 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[0].display_name | Wavelet |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6164716482162476 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C205049153 |
| concepts[2].level | 2 |
| concepts[2].score | 0.49066030979156494 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2698605 |
| concepts[2].display_name | Polarization (electrochemistry) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4896860420703888 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4477371275424957 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C196216189 |
| concepts[5].level | 3 |
| concepts[5].score | 0.44271838665008545 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2867 |
| concepts[5].display_name | Wavelet transform |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.3856087327003479 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C185592680 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0706213116645813 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[7].display_name | Chemistry |
| concepts[8].id | https://openalex.org/C147789679 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11372 |
| concepts[8].display_name | Physical chemistry |
| keywords[0].id | https://openalex.org/keywords/wavelet |
| keywords[0].score | 0.6490383148193359 |
| keywords[0].display_name | Wavelet |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.6164716482162476 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/polarization |
| keywords[2].score | 0.49066030979156494 |
| keywords[2].display_name | Polarization (electrochemistry) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4896860420703888 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4477371275424957 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/wavelet-transform |
| keywords[5].score | 0.44271838665008545 |
| keywords[5].display_name | Wavelet transform |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.3856087327003479 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/chemistry |
| keywords[7].score | 0.0706213116645813 |
| keywords[7].display_name | Chemistry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.03663 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.03663 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.03663 |
| locations[1].id | doi:10.48550/arxiv.2409.03663 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.03663 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5018663744 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3076-527X |
| authorships[0].author.display_name | Khouloud Abdelli |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abdelli, Khouloud |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5006030078 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7612-5681 |
| authorships[1].author.display_name | Matteo Lonardi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lonardi, Matteo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5055981784 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | J. Gripp |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gripp, Jurgen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5114329160 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Samuel Olsson Fabien Boitier |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Boitier, Samuel Olsson Fabien |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5020183635 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8994-4136 |
| authorships[4].author.display_name | Patricia Layec |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Layec, Patricia |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.03663 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Weather-Adaptive Multi-Step Forecasting of State of Polarization Changes in Aerial Fibers Using Wavelet Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10111 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9728999733924866 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Remote Sensing in Agriculture |
| related_works | https://openalex.org/W2382174632, https://openalex.org/W2129959498, https://openalex.org/W2784060934, https://openalex.org/W2902714807, https://openalex.org/W2537489131, https://openalex.org/W2046633342, https://openalex.org/W2394084632, https://openalex.org/W2358293514, https://openalex.org/W2059273319, https://openalex.org/W2077021924 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.03663 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.03663 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.03663 |
| primary_location.id | pmh:oai:arXiv.org:2409.03663 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.03663 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.03663 |
| publication_date | 2024-09-05 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2 |
| abstract_inverted_index.By | 17 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.by | 32 |
| abstract_inverted_index.in | 13, 35, 39 |
| abstract_inverted_index.of | 9 |
| abstract_inverted_index.to | 42 |
| abstract_inverted_index.63% | 38 |
| abstract_inverted_index.65% | 34 |
| abstract_inverted_index.SOP | 11 |
| abstract_inverted_index.and | 23, 37 |
| abstract_inverted_index.for | 6 |
| abstract_inverted_index.our | 27 |
| abstract_inverted_index.the | 19 |
| abstract_inverted_index.MAPE | 40 |
| abstract_inverted_index.RMSE | 36 |
| abstract_inverted_index.over | 33 |
| abstract_inverted_index.data, | 26 |
| abstract_inverted_index.fiber | 15 |
| abstract_inverted_index.novel | 3 |
| abstract_inverted_index.aerial | 14 |
| abstract_inverted_index.links. | 16 |
| abstract_inverted_index.changes | 12 |
| abstract_inverted_index.wavelet | 21 |
| abstract_inverted_index.weather | 25 |
| abstract_inverted_index.accuracy | 31 |
| abstract_inverted_index.approach | 5, 28 |
| abstract_inverted_index.compared | 41 |
| abstract_inverted_index.discrete | 20 |
| abstract_inverted_index.improves | 29 |
| abstract_inverted_index.introduce | 1 |
| abstract_inverted_index.transform | 22 |
| abstract_inverted_index.baselines. | 43 |
| abstract_inverted_index.harnessing | 18 |
| abstract_inverted_index.multi-step | 7 |
| abstract_inverted_index.forecasting | 8, 30 |
| abstract_inverted_index.multi-scale | 10 |
| abstract_inverted_index.incorporating | 24 |
| abstract_inverted_index.weather-adaptive | 4 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |