WeatherDepth: Curriculum Contrastive Learning for Self-Supervised Depth Estimation under Adverse Weather Conditions Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.05556
Depth estimation models have shown promising performance on clear scenes but fail to generalize to adverse weather conditions due to illumination variations, weather particles, etc. In this paper, we propose WeatherDepth, a self-supervised robust depth estimation model with curriculum contrastive learning, to tackle performance degradation in complex weather conditions. Concretely, we first present a progressive curriculum learning scheme with three simple-to-complex curricula to gradually adapt the model from clear to relative adverse, and then to adverse weather scenes. It encourages the model to gradually grasp beneficial depth cues against the weather effect, yielding smoother and better domain adaption. Meanwhile, to prevent the model from forgetting previous curricula, we integrate contrastive learning into different curricula. By drawing reference knowledge from the previous course, our strategy establishes a depth consistency constraint between different courses toward robust depth estimation in diverse weather. Besides, to reduce manual intervention and better adapt to different models, we designed an adaptive curriculum scheduler to automatically search for the best timing for course switching. In the experiment, the proposed solution is proven to be easily incorporated into various architectures and demonstrates state-of-the-art (SoTA) performance on both synthetic and real weather datasets. Source code and data are available at \url{https://github.com/wangjiyuan9/WeatherDepth}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.05556
- https://arxiv.org/pdf/2310.05556
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387560153
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387560153Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.05556Digital Object Identifier
- Title
-
WeatherDepth: Curriculum Contrastive Learning for Self-Supervised Depth Estimation under Adverse Weather ConditionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-09Full publication date if available
- Authors
-
Jiyuan Wang, Chunyu Lin, Lang Nie, Shujun Huang, Yao Zhao, Xing Pan, Rui AiList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.05556Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.05556Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.05556Direct OA link when available
- Concepts
-
Computer science, Curriculum, Consistency (knowledge bases), Scheme (mathematics), Adverse weather, Estimation, Artificial intelligence, Machine learning, Constraint (computer-aided design), Domain (mathematical analysis), Construct (python library), Engineering, Meteorology, Mathematics, Geography, Pedagogy, Mathematical analysis, Mechanical engineering, Systems engineering, Programming language, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387560153 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.05556 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.05556 |
| ids.openalex | https://openalex.org/W4387560153 |
| fwci | 0.18196834 |
| type | preprint |
| title | WeatherDepth: Curriculum Contrastive Learning for Self-Supervised Depth Estimation under Adverse Weather Conditions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10531 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9934999942779541 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Vision and Imaging |
| topics[1].id | https://openalex.org/T13114 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9814000129699707 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Image Processing Techniques and Applications |
| topics[2].id | https://openalex.org/T11019 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.979200005531311 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image Enhancement Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7308610677719116 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C47177190 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7292306423187256 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q207137 |
| concepts[1].display_name | Curriculum |
| concepts[2].id | https://openalex.org/C2776436953 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6363588571548462 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[2].display_name | Consistency (knowledge bases) |
| concepts[3].id | https://openalex.org/C77618280 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5439810752868652 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1155772 |
| concepts[3].display_name | Scheme (mathematics) |
| concepts[4].id | https://openalex.org/C2992147540 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5340202450752258 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1277161 |
| concepts[4].display_name | Adverse weather |
| concepts[5].id | https://openalex.org/C96250715 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5144339203834534 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[5].display_name | Estimation |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.48476260900497437 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.46765583753585815 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C2776036281 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4363851249217987 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q48769818 |
| concepts[8].display_name | Constraint (computer-aided design) |
| concepts[9].id | https://openalex.org/C36503486 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4328669607639313 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[9].display_name | Domain (mathematical analysis) |
| concepts[10].id | https://openalex.org/C2780801425 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42435723543167114 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5164392 |
| concepts[10].display_name | Construct (python library) |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.12872862815856934 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C153294291 |
| concepts[12].level | 1 |
| concepts[12].score | 0.12022125720977783 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[12].display_name | Meteorology |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.08907365798950195 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.08728918433189392 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C19417346 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[15].display_name | Pedagogy |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C78519656 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[17].display_name | Mechanical engineering |
| concepts[18].id | https://openalex.org/C201995342 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[18].display_name | Systems engineering |
| concepts[19].id | https://openalex.org/C199360897 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[19].display_name | Programming language |
| concepts[20].id | https://openalex.org/C15744967 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[20].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7308610677719116 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/curriculum |
| keywords[1].score | 0.7292306423187256 |
| keywords[1].display_name | Curriculum |
| keywords[2].id | https://openalex.org/keywords/consistency |
| keywords[2].score | 0.6363588571548462 |
| keywords[2].display_name | Consistency (knowledge bases) |
| keywords[3].id | https://openalex.org/keywords/scheme |
| keywords[3].score | 0.5439810752868652 |
| keywords[3].display_name | Scheme (mathematics) |
| keywords[4].id | https://openalex.org/keywords/adverse-weather |
| keywords[4].score | 0.5340202450752258 |
| keywords[4].display_name | Adverse weather |
| keywords[5].id | https://openalex.org/keywords/estimation |
| keywords[5].score | 0.5144339203834534 |
| keywords[5].display_name | Estimation |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.48476260900497437 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.46765583753585815 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/constraint |
| keywords[8].score | 0.4363851249217987 |
| keywords[8].display_name | Constraint (computer-aided design) |
| keywords[9].id | https://openalex.org/keywords/domain |
| keywords[9].score | 0.4328669607639313 |
| keywords[9].display_name | Domain (mathematical analysis) |
| keywords[10].id | https://openalex.org/keywords/construct |
| keywords[10].score | 0.42435723543167114 |
| keywords[10].display_name | Construct (python library) |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.12872862815856934 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/meteorology |
| keywords[12].score | 0.12022125720977783 |
| keywords[12].display_name | Meteorology |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.08907365798950195 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/geography |
| keywords[14].score | 0.08728918433189392 |
| keywords[14].display_name | Geography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.05556 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.05556 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.05556 |
| locations[1].id | doi:10.48550/arxiv.2310.05556 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.05556 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5015360292 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-6755-3386 |
| authorships[0].author.display_name | Jiyuan Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Jiyuan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5050402282 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2847-0349 |
| authorships[1].author.display_name | Chunyu Lin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lin, Chunyu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5047964558 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7776-889X |
| authorships[2].author.display_name | Lang Nie |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nie, Lang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5087634069 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6994-1875 |
| authorships[3].author.display_name | Shujun Huang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Huang, Shujun |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100982641 |
| authorships[4].author.orcid | https://orcid.org/0009-0008-9174-5433 |
| authorships[4].author.display_name | Yao Zhao |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhao, Yao |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5049756345 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8997-7840 |
| authorships[5].author.display_name | Xing Pan |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Pan, Xing |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5024843870 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3224-008X |
| authorships[6].author.display_name | Rui Ai |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Ai, Rui |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.05556 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-10-12T00:00:00 |
| display_name | WeatherDepth: Curriculum Contrastive Learning for Self-Supervised Depth Estimation under Adverse Weather Conditions |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10531 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9934999942779541 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Vision and Imaging |
| related_works | https://openalex.org/W2366107444, https://openalex.org/W4388145910, https://openalex.org/W2381570729, https://openalex.org/W1976205134, https://openalex.org/W4248336175, https://openalex.org/W2031260042, https://openalex.org/W2391445434, https://openalex.org/W1510768092, https://openalex.org/W2611003898, https://openalex.org/W2230808081 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.05556 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.05556 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.05556 |
| primary_location.id | pmh:oai:arXiv.org:2310.05556 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.05556 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.05556 |
| publication_date | 2023-10-09 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 31, 53, 125 |
| abstract_inverted_index.By | 114 |
| abstract_inverted_index.In | 25, 166 |
| abstract_inverted_index.It | 78 |
| abstract_inverted_index.an | 152 |
| abstract_inverted_index.at | 199 |
| abstract_inverted_index.be | 175 |
| abstract_inverted_index.in | 45, 136 |
| abstract_inverted_index.is | 172 |
| abstract_inverted_index.on | 7, 186 |
| abstract_inverted_index.to | 12, 14, 19, 41, 62, 69, 74, 82, 99, 140, 147, 156, 174 |
| abstract_inverted_index.we | 28, 50, 107, 150 |
| abstract_inverted_index.and | 72, 94, 144, 181, 189, 195 |
| abstract_inverted_index.are | 197 |
| abstract_inverted_index.but | 10 |
| abstract_inverted_index.due | 18 |
| abstract_inverted_index.for | 159, 163 |
| abstract_inverted_index.our | 122 |
| abstract_inverted_index.the | 65, 80, 89, 101, 119, 160, 167, 169 |
| abstract_inverted_index.best | 161 |
| abstract_inverted_index.both | 187 |
| abstract_inverted_index.code | 194 |
| abstract_inverted_index.cues | 87 |
| abstract_inverted_index.data | 196 |
| abstract_inverted_index.etc. | 24 |
| abstract_inverted_index.fail | 11 |
| abstract_inverted_index.from | 67, 103, 118 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.into | 111, 178 |
| abstract_inverted_index.real | 190 |
| abstract_inverted_index.then | 73 |
| abstract_inverted_index.this | 26 |
| abstract_inverted_index.with | 37, 58 |
| abstract_inverted_index.Depth | 0 |
| abstract_inverted_index.adapt | 64, 146 |
| abstract_inverted_index.clear | 8, 68 |
| abstract_inverted_index.depth | 34, 86, 126, 134 |
| abstract_inverted_index.first | 51 |
| abstract_inverted_index.grasp | 84 |
| abstract_inverted_index.model | 36, 66, 81, 102 |
| abstract_inverted_index.shown | 4 |
| abstract_inverted_index.three | 59 |
| abstract_inverted_index.(SoTA) | 184 |
| abstract_inverted_index.Source | 193 |
| abstract_inverted_index.better | 95, 145 |
| abstract_inverted_index.course | 164 |
| abstract_inverted_index.domain | 96 |
| abstract_inverted_index.easily | 176 |
| abstract_inverted_index.manual | 142 |
| abstract_inverted_index.models | 2 |
| abstract_inverted_index.paper, | 27 |
| abstract_inverted_index.proven | 173 |
| abstract_inverted_index.reduce | 141 |
| abstract_inverted_index.robust | 33, 133 |
| abstract_inverted_index.scenes | 9 |
| abstract_inverted_index.scheme | 57 |
| abstract_inverted_index.search | 158 |
| abstract_inverted_index.tackle | 42 |
| abstract_inverted_index.timing | 162 |
| abstract_inverted_index.toward | 132 |
| abstract_inverted_index.adverse | 15, 75 |
| abstract_inverted_index.against | 88 |
| abstract_inverted_index.between | 129 |
| abstract_inverted_index.complex | 46 |
| abstract_inverted_index.course, | 121 |
| abstract_inverted_index.courses | 131 |
| abstract_inverted_index.diverse | 137 |
| abstract_inverted_index.drawing | 115 |
| abstract_inverted_index.effect, | 91 |
| abstract_inverted_index.models, | 149 |
| abstract_inverted_index.present | 52 |
| abstract_inverted_index.prevent | 100 |
| abstract_inverted_index.propose | 29 |
| abstract_inverted_index.scenes. | 77 |
| abstract_inverted_index.various | 179 |
| abstract_inverted_index.weather | 16, 22, 47, 76, 90, 191 |
| abstract_inverted_index.Besides, | 139 |
| abstract_inverted_index.adaptive | 153 |
| abstract_inverted_index.adverse, | 71 |
| abstract_inverted_index.designed | 151 |
| abstract_inverted_index.learning | 56, 110 |
| abstract_inverted_index.previous | 105, 120 |
| abstract_inverted_index.proposed | 170 |
| abstract_inverted_index.relative | 70 |
| abstract_inverted_index.smoother | 93 |
| abstract_inverted_index.solution | 171 |
| abstract_inverted_index.strategy | 123 |
| abstract_inverted_index.weather. | 138 |
| abstract_inverted_index.yielding | 92 |
| abstract_inverted_index.adaption. | 97 |
| abstract_inverted_index.available | 198 |
| abstract_inverted_index.curricula | 61 |
| abstract_inverted_index.datasets. | 192 |
| abstract_inverted_index.different | 112, 130, 148 |
| abstract_inverted_index.gradually | 63, 83 |
| abstract_inverted_index.integrate | 108 |
| abstract_inverted_index.knowledge | 117 |
| abstract_inverted_index.learning, | 40 |
| abstract_inverted_index.promising | 5 |
| abstract_inverted_index.reference | 116 |
| abstract_inverted_index.scheduler | 155 |
| abstract_inverted_index.synthetic | 188 |
| abstract_inverted_index.Meanwhile, | 98 |
| abstract_inverted_index.beneficial | 85 |
| abstract_inverted_index.conditions | 17 |
| abstract_inverted_index.constraint | 128 |
| abstract_inverted_index.curricula, | 106 |
| abstract_inverted_index.curricula. | 113 |
| abstract_inverted_index.curriculum | 38, 55, 154 |
| abstract_inverted_index.encourages | 79 |
| abstract_inverted_index.estimation | 1, 35, 135 |
| abstract_inverted_index.forgetting | 104 |
| abstract_inverted_index.generalize | 13 |
| abstract_inverted_index.particles, | 23 |
| abstract_inverted_index.switching. | 165 |
| abstract_inverted_index.Concretely, | 49 |
| abstract_inverted_index.conditions. | 48 |
| abstract_inverted_index.consistency | 127 |
| abstract_inverted_index.contrastive | 39, 109 |
| abstract_inverted_index.degradation | 44 |
| abstract_inverted_index.establishes | 124 |
| abstract_inverted_index.experiment, | 168 |
| abstract_inverted_index.performance | 6, 43, 185 |
| abstract_inverted_index.progressive | 54 |
| abstract_inverted_index.variations, | 21 |
| abstract_inverted_index.demonstrates | 182 |
| abstract_inverted_index.illumination | 20 |
| abstract_inverted_index.incorporated | 177 |
| abstract_inverted_index.intervention | 143 |
| abstract_inverted_index.WeatherDepth, | 30 |
| abstract_inverted_index.architectures | 180 |
| abstract_inverted_index.automatically | 157 |
| abstract_inverted_index.self-supervised | 32 |
| abstract_inverted_index.state-of-the-art | 183 |
| abstract_inverted_index.simple-to-complex | 60 |
| abstract_inverted_index.\url{https://github.com/wangjiyuan9/WeatherDepth}. | 200 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.46115367 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |