Wedge angle and orientation recognition of multi-opening objects using an attention-based CNN model Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1364/oe.529655
In industries such as manufacturing and safety monitoring, accurately identifying the shape characteristics of multi-opening objects is essential for the assembly, maintenance, and fault diagnosis of machinery components. Compared to traditional contact sensing methods, image-based feature recognition technology offers non-destructive assessment and greater efficiency, holding significant practical value in these fields. Although convolutional neural networks (CNNs) have achieved remarkable success in image classification and feature recognition tasks, they still face challenges in dealing with subtle features in complex backgrounds, especially for objects with similar openings, where minute angle differences are critical. To improve the identification accuracy and speed, this study introduces an efficient CNN model, ADSA-Net, which utilizes the additive self-attention mechanism. When coupled with an active light source system, ADSA-Net enables non-contact, high-precision recognition of shape features in 14 classes of rotationally symmetric objects with multiple openings. Experimental results demonstrate that ADSA-Net achieves accuracies of 100%, ≥98.04%, and ≥98.98% in identifying the number of openings, wedge angles, and opening orientations of all objects, respectively with a resolution of 1°. By adopting linear layers to replace the traditional quadratic matrix multiplication operations for key-value interactions, ADSA-Net significantly enhances computational efficiency and identification accuracy.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1364/oe.529655
- OA Status
- gold
- Cited By
- 3
- References
- 52
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400742126
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400742126Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1364/oe.529655Digital Object Identifier
- Title
-
Wedge angle and orientation recognition of multi-opening objects using an attention-based CNN modelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-17Full publication date if available
- Authors
-
Yiwen Zhang, Siao Li, Xiaoyan Wang, Yongxiong Ren, Zihan Geng, Fei Yang, Zhongqi Pan, Yang YueList of authors in order
- Landing page
-
https://doi.org/10.1364/oe.529655Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1364/oe.529655Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Wedge (geometry), Convolutional neural network, Computer vision, Pattern recognition (psychology), Feature (linguistics), Identification (biology), Orientation (vector space), Mathematics, Geometry, Botany, Biology, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
52Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400742126 |
|---|---|
| doi | https://doi.org/10.1364/oe.529655 |
| ids.doi | https://doi.org/10.1364/oe.529655 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39573221 |
| ids.openalex | https://openalex.org/W4400742126 |
| fwci | 2.04312549 |
| type | article |
| title | Wedge angle and orientation recognition of multi-opening objects using an attention-based CNN model |
| awards[0].id | https://openalex.org/G6143660372 |
| awards[0].funder_id | https://openalex.org/F4320322666 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2023-JC-YB-587 |
| awards[0].funder_display_name | Natural Science Foundation of Shanxi Province |
| biblio.issue | 17 |
| biblio.volume | 32 |
| biblio.last_page | 30653 |
| biblio.first_page | 30653 |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T13049 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9973999857902527 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Surface Roughness and Optical Measurements |
| topics[2].id | https://openalex.org/T12549 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9940000176429749 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Object Detection Techniques |
| funders[0].id | https://openalex.org/F4320322666 |
| funders[0].ror | |
| funders[0].display_name | Natural Science Foundation of Shanxi Province |
| is_xpac | False |
| apc_list.value | 2270 |
| apc_list.currency | USD |
| apc_list.value_usd | 2270 |
| apc_paid.value | 2270 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2270 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7410992980003357 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7064396739006042 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C47422493 |
| concepts[2].level | 2 |
| concepts[2].score | 0.654747724533081 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2755127 |
| concepts[2].display_name | Wedge (geometry) |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6106656789779663 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5383243560791016 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5080904960632324 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4862121641635895 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C116834253 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44955217838287354 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[7].display_name | Identification (biology) |
| concepts[8].id | https://openalex.org/C16345878 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4367954134941101 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q107472979 |
| concepts[8].display_name | Orientation (vector space) |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.1169188916683197 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C2524010 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07896003127098083 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[10].display_name | Geometry |
| concepts[11].id | https://openalex.org/C59822182 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[11].display_name | Botany |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7410992980003357 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7064396739006042 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/wedge |
| keywords[2].score | 0.654747724533081 |
| keywords[2].display_name | Wedge (geometry) |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.6106656789779663 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.5383243560791016 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5080904960632324 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.4862121641635895 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/identification |
| keywords[7].score | 0.44955217838287354 |
| keywords[7].display_name | Identification (biology) |
| keywords[8].id | https://openalex.org/keywords/orientation |
| keywords[8].score | 0.4367954134941101 |
| keywords[8].display_name | Orientation (vector space) |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.1169188916683197 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/geometry |
| keywords[10].score | 0.07896003127098083 |
| keywords[10].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.1364/oe.529655 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S178776955 |
| locations[0].source.issn | 1094-4087 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1094-4087 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Optics Express |
| locations[0].source.host_organization | https://openalex.org/P4310315679 |
| locations[0].source.host_organization_name | Optica Publishing Group |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315679 |
| locations[0].source.host_organization_lineage_names | Optica Publishing Group |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Optics Express |
| locations[0].landing_page_url | https://doi.org/10.1364/oe.529655 |
| locations[1].id | pmid:39573221 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Optics express |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39573221 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100430667 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7304-9820 |
| authorships[0].author.display_name | Yiwen Zhang |
| authorships[0].countries | KH |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I186365177 |
| authorships[0].affiliations[0].raw_affiliation_string | CCDC Drilling & Production Technology Research Institute |
| authorships[0].institutions[0].id | https://openalex.org/I186365177 |
| authorships[0].institutions[0].ror | https://ror.org/054z67s11 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I186365177 |
| authorships[0].institutions[0].country_code | KH |
| authorships[0].institutions[0].display_name | Institute of Technology of Cambodia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yiwen Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | CCDC Drilling & Production Technology Research Institute |
| authorships[1].author.id | https://openalex.org/A5028534578 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1830-0602 |
| authorships[1].author.display_name | Siao Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I205237279 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Modern Optics, Nankai University |
| authorships[1].institutions[0].id | https://openalex.org/I205237279 |
| authorships[1].institutions[0].ror | https://ror.org/01y1kjr75 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I205237279 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nankai University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Si-Ao Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Modern Optics, Nankai University |
| authorships[2].author.id | https://openalex.org/A5100381800 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8763-289X |
| authorships[2].author.display_name | Xiaoyan Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I205237279 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Modern Optics, Nankai University |
| authorships[2].institutions[0].id | https://openalex.org/I205237279 |
| authorships[2].institutions[0].ror | https://ror.org/01y1kjr75 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I205237279 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nankai University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaoyan Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Modern Optics, Nankai University |
| authorships[3].author.id | https://openalex.org/A5041229741 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8291-883X |
| authorships[3].author.display_name | Yongxiong Ren |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1174212, https://openalex.org/I2800817003 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Southern California |
| authorships[3].institutions[0].id | https://openalex.org/I2800817003 |
| authorships[3].institutions[0].ror | https://ror.org/058zz0t50 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I2800817003 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Southern California University for Professional Studies |
| authorships[3].institutions[1].id | https://openalex.org/I1174212 |
| authorships[3].institutions[1].ror | https://ror.org/03taz7m60 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I1174212 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | University of Southern California |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yongxiong Ren |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Southern California |
| authorships[4].author.id | https://openalex.org/A5101409146 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2690-3374 |
| authorships[4].author.display_name | Zihan Geng |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[4].affiliations[0].raw_affiliation_string | Tsinghua University |
| authorships[4].institutions[0].id | https://openalex.org/I99065089 |
| authorships[4].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Tsinghua University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zihan Geng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Tsinghua University |
| authorships[5].author.id | https://openalex.org/A5030836463 |
| authorships[5].author.orcid | https://orcid.org/0009-0000-6251-9885 |
| authorships[5].author.display_name | Fei Yang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I194716290 |
| authorships[5].affiliations[0].raw_affiliation_string | China Academy of Space Technology |
| authorships[5].institutions[0].id | https://openalex.org/I194716290 |
| authorships[5].institutions[0].ror | https://ror.org/025397a59 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I194716290, https://openalex.org/I2802615301 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | China Academy of Space Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Fei Yang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | China Academy of Space Technology |
| authorships[6].author.id | https://openalex.org/A5042805627 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2325-2254 |
| authorships[6].author.display_name | Zhongqi Pan |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I79516672 |
| authorships[6].affiliations[0].raw_affiliation_string | University of Louisiana at Lafayette |
| authorships[6].institutions[0].id | https://openalex.org/I79516672 |
| authorships[6].institutions[0].ror | https://ror.org/01x8rc503 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I2799628689, https://openalex.org/I79516672 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Louisiana at Lafayette |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zhongqi Pan |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | University of Louisiana at Lafayette |
| authorships[7].author.id | https://openalex.org/A5100624674 |
| authorships[7].author.orcid | https://orcid.org/0009-0005-8534-4826 |
| authorships[7].author.display_name | Yang Yue |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Yang Yue |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1364/oe.529655 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Wedge angle and orientation recognition of multi-opening objects using an attention-based CNN model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2017385525, https://openalex.org/W2042698599, https://openalex.org/W1999187231, https://openalex.org/W4248634293, https://openalex.org/W2351605363, https://openalex.org/W2090638913, https://openalex.org/W2358303194, https://openalex.org/W2089136900, https://openalex.org/W2072315057, https://openalex.org/W2387105288 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1364/oe.529655 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S178776955 |
| best_oa_location.source.issn | 1094-4087 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1094-4087 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Optics Express |
| best_oa_location.source.host_organization | https://openalex.org/P4310315679 |
| best_oa_location.source.host_organization_name | Optica Publishing Group |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315679 |
| best_oa_location.source.host_organization_lineage_names | Optica Publishing Group |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Optics Express |
| best_oa_location.landing_page_url | https://doi.org/10.1364/oe.529655 |
| primary_location.id | doi:10.1364/oe.529655 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S178776955 |
| primary_location.source.issn | 1094-4087 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1094-4087 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Optics Express |
| primary_location.source.host_organization | https://openalex.org/P4310315679 |
| primary_location.source.host_organization_name | Optica Publishing Group |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315679 |
| primary_location.source.host_organization_lineage_names | Optica Publishing Group |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Optics Express |
| primary_location.landing_page_url | https://doi.org/10.1364/oe.529655 |
| publication_date | 2024-07-17 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3196190178, https://openalex.org/W3114862845, https://openalex.org/W3216457080, https://openalex.org/W2998506103, https://openalex.org/W3209651137, https://openalex.org/W4313377512, https://openalex.org/W4385068134, https://openalex.org/W4282930545, https://openalex.org/W4388734525, https://openalex.org/W4320001321, https://openalex.org/W4319878658, https://openalex.org/W3164104137, https://openalex.org/W4210368916, https://openalex.org/W3193494519, https://openalex.org/W4306950010, https://openalex.org/W2757003988, https://openalex.org/W4364360342, https://openalex.org/W4323351162, https://openalex.org/W4285189202, https://openalex.org/W3009207988, https://openalex.org/W4302827845, https://openalex.org/W4281490773, https://openalex.org/W3146366485, https://openalex.org/W4306967787, https://openalex.org/W2928045706, https://openalex.org/W3138598836, https://openalex.org/W4226059153, https://openalex.org/W4309466783, https://openalex.org/W1966795171, https://openalex.org/W4386819208, https://openalex.org/W4224236022, https://openalex.org/W4390227473, https://openalex.org/W4390535997, https://openalex.org/W4389939243, https://openalex.org/W3203632031, https://openalex.org/W2963773494, https://openalex.org/W2527348349, https://openalex.org/W4385771554, https://openalex.org/W4304005877, https://openalex.org/W2012664213, https://openalex.org/W2619883154, https://openalex.org/W2437155937, https://openalex.org/W3120015598, https://openalex.org/W4297775537, https://openalex.org/W3175515048, https://openalex.org/W1570753544, https://openalex.org/W3204042411, https://openalex.org/W2343289644, https://openalex.org/W3130710265, https://openalex.org/W2558580397, https://openalex.org/W3100021595, https://openalex.org/W3103690961 |
| referenced_works_count | 52 |
| abstract_inverted_index.a | 166 |
| abstract_inverted_index.14 | 129 |
| abstract_inverted_index.By | 170 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 91 |
| abstract_inverted_index.an | 101, 115 |
| abstract_inverted_index.as | 3 |
| abstract_inverted_index.in | 48, 60, 71, 76, 128, 150 |
| abstract_inverted_index.is | 16 |
| abstract_inverted_index.of | 13, 25, 125, 131, 145, 154, 161, 168 |
| abstract_inverted_index.to | 29, 174 |
| abstract_inverted_index.CNN | 103 |
| abstract_inverted_index.all | 162 |
| abstract_inverted_index.and | 5, 22, 41, 63, 96, 148, 158, 190 |
| abstract_inverted_index.are | 89 |
| abstract_inverted_index.for | 18, 80, 182 |
| abstract_inverted_index.the | 10, 19, 93, 108, 152, 176 |
| abstract_inverted_index.1°. | 169 |
| abstract_inverted_index.When | 112 |
| abstract_inverted_index.face | 69 |
| abstract_inverted_index.have | 56 |
| abstract_inverted_index.such | 2 |
| abstract_inverted_index.that | 141 |
| abstract_inverted_index.they | 67 |
| abstract_inverted_index.this | 98 |
| abstract_inverted_index.with | 73, 82, 114, 135, 165 |
| abstract_inverted_index.100%, | 146 |
| abstract_inverted_index.angle | 87 |
| abstract_inverted_index.fault | 23 |
| abstract_inverted_index.image | 61 |
| abstract_inverted_index.light | 117 |
| abstract_inverted_index.shape | 11, 126 |
| abstract_inverted_index.still | 68 |
| abstract_inverted_index.study | 99 |
| abstract_inverted_index.these | 49 |
| abstract_inverted_index.value | 47 |
| abstract_inverted_index.wedge | 156 |
| abstract_inverted_index.where | 85 |
| abstract_inverted_index.which | 106 |
| abstract_inverted_index.(CNNs) | 55 |
| abstract_inverted_index.active | 116 |
| abstract_inverted_index.layers | 173 |
| abstract_inverted_index.linear | 172 |
| abstract_inverted_index.matrix | 179 |
| abstract_inverted_index.minute | 86 |
| abstract_inverted_index.model, | 104 |
| abstract_inverted_index.neural | 53 |
| abstract_inverted_index.number | 153 |
| abstract_inverted_index.offers | 38 |
| abstract_inverted_index.safety | 6 |
| abstract_inverted_index.source | 118 |
| abstract_inverted_index.speed, | 97 |
| abstract_inverted_index.subtle | 74 |
| abstract_inverted_index.tasks, | 66 |
| abstract_inverted_index.angles, | 157 |
| abstract_inverted_index.classes | 130 |
| abstract_inverted_index.complex | 77 |
| abstract_inverted_index.contact | 31 |
| abstract_inverted_index.coupled | 113 |
| abstract_inverted_index.dealing | 72 |
| abstract_inverted_index.enables | 121 |
| abstract_inverted_index.feature | 35, 64 |
| abstract_inverted_index.fields. | 50 |
| abstract_inverted_index.greater | 42 |
| abstract_inverted_index.holding | 44 |
| abstract_inverted_index.improve | 92 |
| abstract_inverted_index.objects | 15, 81, 134 |
| abstract_inverted_index.opening | 159 |
| abstract_inverted_index.replace | 175 |
| abstract_inverted_index.results | 139 |
| abstract_inverted_index.sensing | 32 |
| abstract_inverted_index.similar | 83 |
| abstract_inverted_index.success | 59 |
| abstract_inverted_index.system, | 119 |
| abstract_inverted_index.ADSA-Net | 120, 142, 185 |
| abstract_inverted_index.Although | 51 |
| abstract_inverted_index.Compared | 28 |
| abstract_inverted_index.accuracy | 95 |
| abstract_inverted_index.achieved | 57 |
| abstract_inverted_index.achieves | 143 |
| abstract_inverted_index.additive | 109 |
| abstract_inverted_index.adopting | 171 |
| abstract_inverted_index.enhances | 187 |
| abstract_inverted_index.features | 75, 127 |
| abstract_inverted_index.methods, | 33 |
| abstract_inverted_index.multiple | 136 |
| abstract_inverted_index.networks | 54 |
| abstract_inverted_index.objects, | 163 |
| abstract_inverted_index.utilizes | 107 |
| abstract_inverted_index.ADSA-Net, | 105 |
| abstract_inverted_index.accuracy. | 192 |
| abstract_inverted_index.assembly, | 20 |
| abstract_inverted_index.critical. | 90 |
| abstract_inverted_index.diagnosis | 24 |
| abstract_inverted_index.efficient | 102 |
| abstract_inverted_index.essential | 17 |
| abstract_inverted_index.key-value | 183 |
| abstract_inverted_index.machinery | 26 |
| abstract_inverted_index.openings, | 84, 155 |
| abstract_inverted_index.openings. | 137 |
| abstract_inverted_index.practical | 46 |
| abstract_inverted_index.quadratic | 178 |
| abstract_inverted_index.symmetric | 133 |
| abstract_inverted_index.≥98.98% | 149 |
| abstract_inverted_index.accuracies | 144 |
| abstract_inverted_index.accurately | 8 |
| abstract_inverted_index.assessment | 40 |
| abstract_inverted_index.challenges | 70 |
| abstract_inverted_index.efficiency | 189 |
| abstract_inverted_index.especially | 79 |
| abstract_inverted_index.industries | 1 |
| abstract_inverted_index.introduces | 100 |
| abstract_inverted_index.mechanism. | 111 |
| abstract_inverted_index.operations | 181 |
| abstract_inverted_index.remarkable | 58 |
| abstract_inverted_index.resolution | 167 |
| abstract_inverted_index.technology | 37 |
| abstract_inverted_index.≥98.04%, | 147 |
| abstract_inverted_index.components. | 27 |
| abstract_inverted_index.demonstrate | 140 |
| abstract_inverted_index.differences | 88 |
| abstract_inverted_index.efficiency, | 43 |
| abstract_inverted_index.identifying | 9, 151 |
| abstract_inverted_index.image-based | 34 |
| abstract_inverted_index.monitoring, | 7 |
| abstract_inverted_index.recognition | 36, 65, 124 |
| abstract_inverted_index.significant | 45 |
| abstract_inverted_index.traditional | 30, 177 |
| abstract_inverted_index.Experimental | 138 |
| abstract_inverted_index.backgrounds, | 78 |
| abstract_inverted_index.maintenance, | 21 |
| abstract_inverted_index.non-contact, | 122 |
| abstract_inverted_index.orientations | 160 |
| abstract_inverted_index.respectively | 164 |
| abstract_inverted_index.rotationally | 132 |
| abstract_inverted_index.computational | 188 |
| abstract_inverted_index.convolutional | 52 |
| abstract_inverted_index.interactions, | 184 |
| abstract_inverted_index.manufacturing | 4 |
| abstract_inverted_index.multi-opening | 14 |
| abstract_inverted_index.significantly | 186 |
| abstract_inverted_index.classification | 62 |
| abstract_inverted_index.high-precision | 123 |
| abstract_inverted_index.identification | 94, 191 |
| abstract_inverted_index.multiplication | 180 |
| abstract_inverted_index.self-attention | 110 |
| abstract_inverted_index.characteristics | 12 |
| abstract_inverted_index.non-destructive | 39 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6299999952316284 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.83188167 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |