Weight and Structure Determination Neural Network Aided With Double Pseudoinversion for Diagnosis of Flat Foot Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1109/access.2019.2903634
Deep learning models often have complicated structures with low computational speed and the requirement of a large amount of storage space, which limits their own practical application on some devices with insufficient computing power. This paper proposes the weight and structure determination neural network aided with double pseudoinversion (WASDNN-DP) that can overcome these shortcomings. First, the model structure, theoretical bases, and the algorithms of WASDNN-DP are given. In the process of constructing the network, the weight matrix between the hidden layer and the output layer is first randomly generated. After the weight matrix between the input layer and the hidden layer is analytically determined, the weight matrix between the hidden layer and the output layer is re-determined by the pseudo-inverse method. Furthermore, in WASDNN-DP, the structure of the neural network is determined by a progressive method. Subsequently, based on two datasets collected from children aged 7-15 years by using smart insoles, the comparative experiments between WASDNN-DP and some other machine learning models are carried out, which illustrate the superiority of the proposed WASDNN-DP in the diagnosis of flat foot.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2019.2903634
- https://ieeexplore.ieee.org/ielx7/6287639/8600701/08662574.pdf
- OA Status
- gold
- Cited By
- 33
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2921061144
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2921061144Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2019.2903634Digital Object Identifier
- Title
-
Weight and Structure Determination Neural Network Aided With Double Pseudoinversion for Diagnosis of Flat FootWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Liangming Chen, Zhiguan Huang, Yuhe Li, Nianyin Zeng, Mei Liu, Anjie Peng, Long JinList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2019.2903634Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08662574.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08662574.pdfDirect OA link when available
- Concepts
-
Artificial neural network, Computer science, Layer (electronics), Matrix (chemical analysis), Artificial intelligence, Inverse, Power (physics), Process (computing), Algorithm, Set (abstract data type), Pattern recognition (psychology), Mathematics, Materials science, Programming language, Geometry, Operating system, Physics, Quantum mechanics, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
33Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2, 2023: 7, 2022: 6, 2021: 8Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2921061144 |
|---|---|
| doi | https://doi.org/10.1109/access.2019.2903634 |
| ids.doi | https://doi.org/10.1109/access.2019.2903634 |
| ids.mag | 2921061144 |
| ids.openalex | https://openalex.org/W2921061144 |
| fwci | 4.63202971 |
| type | article |
| title | Weight and Structure Determination Neural Network Aided With Double Pseudoinversion for Diagnosis of Flat Foot |
| awards[0].id | https://openalex.org/G238510033 |
| awards[0].funder_id | https://openalex.org/F4320322843 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2017JJ3257 |
| awards[0].funder_display_name | Natural Science Foundation of Hunan Province |
| awards[1].id | https://openalex.org/G5539851405 |
| awards[1].funder_id | https://openalex.org/F4320322880 |
| awards[1].display_name | |
| awards[1].funder_award_id | 18JR3RA268 |
| awards[1].funder_display_name | Natural Science Foundation of Gansu Province |
| awards[2].id | https://openalex.org/G4008459963 |
| awards[2].funder_id | https://openalex.org/F4320322880 |
| awards[2].display_name | |
| awards[2].funder_award_id | 18JR3RA264 |
| awards[2].funder_display_name | Natural Science Foundation of Gansu Province |
| awards[3].id | https://openalex.org/G7634405158 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 61703189 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 7 |
| biblio.last_page | 33008 |
| biblio.first_page | 33001 |
| topics[0].id | https://openalex.org/T11227 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9790999889373779 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2712 |
| topics[0].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[0].display_name | Diabetic Foot Ulcer Assessment and Management |
| topics[1].id | https://openalex.org/T12676 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9697999954223633 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and ELM |
| topics[2].id | https://openalex.org/T11018 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9672999978065491 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Lower Extremity Biomechanics and Pathologies |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320322843 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Hunan Province |
| funders[2].id | https://openalex.org/F4320322880 |
| funders[2].ror | |
| funders[2].display_name | Natural Science Foundation of Gansu Province |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7078984975814819 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7050807476043701 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2779227376 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6339992880821228 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6505497 |
| concepts[2].display_name | Layer (electronics) |
| concepts[3].id | https://openalex.org/C106487976 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5667474269866943 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[3].display_name | Matrix (chemical analysis) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5004394054412842 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C207467116 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4891641438007355 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4385666 |
| concepts[5].display_name | Inverse |
| concepts[6].id | https://openalex.org/C163258240 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47725293040275574 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[6].display_name | Power (physics) |
| concepts[7].id | https://openalex.org/C98045186 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4734622836112976 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[7].display_name | Process (computing) |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4701659381389618 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C177264268 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41518735885620117 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[9].display_name | Set (abstract data type) |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.40444543957710266 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.20657703280448914 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C192562407 |
| concepts[12].level | 0 |
| concepts[12].score | 0.07883754372596741 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[12].display_name | Materials science |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C159985019 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[18].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.7078984975814819 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7050807476043701 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/layer |
| keywords[2].score | 0.6339992880821228 |
| keywords[2].display_name | Layer (electronics) |
| keywords[3].id | https://openalex.org/keywords/matrix |
| keywords[3].score | 0.5667474269866943 |
| keywords[3].display_name | Matrix (chemical analysis) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5004394054412842 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/inverse |
| keywords[5].score | 0.4891641438007355 |
| keywords[5].display_name | Inverse |
| keywords[6].id | https://openalex.org/keywords/power |
| keywords[6].score | 0.47725293040275574 |
| keywords[6].display_name | Power (physics) |
| keywords[7].id | https://openalex.org/keywords/process |
| keywords[7].score | 0.4734622836112976 |
| keywords[7].display_name | Process (computing) |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.4701659381389618 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/set |
| keywords[9].score | 0.41518735885620117 |
| keywords[9].display_name | Set (abstract data type) |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.40444543957710266 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.20657703280448914 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/materials-science |
| keywords[12].score | 0.07883754372596741 |
| keywords[12].display_name | Materials science |
| language | en |
| locations[0].id | doi:10.1109/access.2019.2903634 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08662574.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2019.2903634 |
| locations[1].id | pmh:oai:ir.lzu.edu.cn/:262010/298325 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://ir.lzu.edu.cn/handle/262010/298325 |
| locations[2].id | pmh:oai:ir.lzu.edu.cn/:262010/404047 |
| locations[2].is_oa | False |
| locations[2].source | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Journal article (JA) |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://ir.lzu.edu.cn/handle/262010/404047 |
| locations[3].id | pmh:oai:doaj.org/article:0f6075684be04644a6d1311953df9c77 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | cc-by-sa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | IEEE Access, Vol 7, Pp 33001-33008 (2019) |
| locations[3].landing_page_url | https://doaj.org/article/0f6075684be04644a6d1311953df9c77 |
| locations[4].id | pmh:oai:ir.lzu.edu.cn/:262010/269826 |
| locations[4].is_oa | False |
| locations[4].source | |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | 期刊论文 |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | http://ir.lzu.edu.cn/handle/262010/269826 |
| locations[5].id | pmh:oai:ir.lzu.edu.cn/:262010/281495 |
| locations[5].is_oa | False |
| locations[5].source | |
| locations[5].license | |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Article |
| locations[5].license_id | |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | |
| locations[5].landing_page_url | http://ir.lzu.edu.cn/handle/262010/281495 |
| locations[6].id | pmh:oai:ir.lzu.edu.cn/:262010/293448 |
| locations[6].is_oa | False |
| locations[6].source | |
| locations[6].license | |
| locations[6].pdf_url | |
| locations[6].version | submittedVersion |
| locations[6].raw_type | Article |
| locations[6].license_id | |
| locations[6].is_accepted | False |
| locations[6].is_published | False |
| locations[6].raw_source_name | |
| locations[6].landing_page_url | http://ir.lzu.edu.cn/handle/262010/293448 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101639670 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0288-5319 |
| authorships[0].author.display_name | Liangming Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1297991670 |
| authorships[0].affiliations[0].raw_affiliation_string | Special Environment Key Laboratory of Sichuan Province, Southwest University of Science and Technology, Mianyang, China |
| authorships[0].institutions[0].id | https://openalex.org/I1297991670 |
| authorships[0].institutions[0].ror | https://ror.org/04d996474 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I1297991670 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Southwest University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liangming Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Special Environment Key Laboratory of Sichuan Province, Southwest University of Science and Technology, Mianyang, China |
| authorships[1].author.id | https://openalex.org/A5088582446 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2057-7021 |
| authorships[1].author.display_name | Zhiguan Huang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3130633384 |
| authorships[1].affiliations[0].raw_affiliation_string | Guangdong Provincial Engineering Technology Research Center for Sports Assistive Device, Guangzhou Sport University, Guangzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I3130633384 |
| authorships[1].institutions[0].ror | https://ror.org/046r6pk12 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3130633384 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Guangzhou Sport University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhiguan Huang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Guangdong Provincial Engineering Technology Research Center for Sports Assistive Device, Guangzhou Sport University, Guangzhou, China |
| authorships[2].author.id | https://openalex.org/A5101840962 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0725-9352 |
| authorships[2].author.display_name | Yuhe Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3130633384 |
| authorships[2].affiliations[0].raw_affiliation_string | Guangdong Provincial Engineering Technology Research Center for Sports Assistive Device, Guangzhou Sport University, Guangzhou, China |
| authorships[2].institutions[0].id | https://openalex.org/I3130633384 |
| authorships[2].institutions[0].ror | https://ror.org/046r6pk12 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I3130633384 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guangzhou Sport University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuhe Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Guangdong Provincial Engineering Technology Research Center for Sports Assistive Device, Guangzhou Sport University, Guangzhou, China |
| authorships[3].author.id | https://openalex.org/A5025693167 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6957-2942 |
| authorships[3].author.display_name | Nianyin Zeng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I191208505 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China |
| authorships[3].institutions[0].id | https://openalex.org/I191208505 |
| authorships[3].institutions[0].ror | https://ror.org/00mcjh785 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I191208505 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xiamen University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nianyin Zeng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China |
| authorships[4].author.id | https://openalex.org/A5100347934 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0445-941X |
| authorships[4].author.display_name | Mei Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I76214153 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Information Science and Engineering, Lanzhou University, Lanzhou, China |
| authorships[4].institutions[0].id | https://openalex.org/I76214153 |
| authorships[4].institutions[0].ror | https://ror.org/01mkqqe32 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I76214153 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Lanzhou University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mei Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Information Science and Engineering, Lanzhou University, Lanzhou, China |
| authorships[5].author.id | https://openalex.org/A5014092332 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9287-7536 |
| authorships[5].author.display_name | Anjie Peng |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1297991670 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China |
| authorships[5].institutions[0].id | https://openalex.org/I1297991670 |
| authorships[5].institutions[0].ror | https://ror.org/04d996474 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I1297991670 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Southwest University of Science and Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Anjie Peng |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China |
| authorships[6].author.id | https://openalex.org/A5100703636 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5329-5098 |
| authorships[6].author.display_name | Long Jin |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1297991670 |
| authorships[6].affiliations[0].raw_affiliation_string | Special Environment Key Laboratory of Sichuan Province, Southwest University of Science and Technology, Mianyang, China |
| authorships[6].institutions[0].id | https://openalex.org/I1297991670 |
| authorships[6].institutions[0].ror | https://ror.org/04d996474 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I1297991670 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Southwest University of Science and Technology |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Long Jin |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Special Environment Key Laboratory of Sichuan Province, Southwest University of Science and Technology, Mianyang, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08662574.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Weight and Structure Determination Neural Network Aided With Double Pseudoinversion for Diagnosis of Flat Foot |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11227 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9790999889373779 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2712 |
| primary_topic.subfield.display_name | Endocrinology, Diabetes and Metabolism |
| primary_topic.display_name | Diabetic Foot Ulcer Assessment and Management |
| related_works | https://openalex.org/W2391251536, https://openalex.org/W2362198218, https://openalex.org/W2019521278, https://openalex.org/W1984922432, https://openalex.org/W2375008505, https://openalex.org/W1982750869, https://openalex.org/W2085756966, https://openalex.org/W2350679292, https://openalex.org/W4317939968, https://openalex.org/W2086348228 |
| cited_by_count | 33 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 7 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 8 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 3 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 5 |
| locations_count | 7 |
| best_oa_location.id | doi:10.1109/access.2019.2903634 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08662574.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2019.2903634 |
| primary_location.id | doi:10.1109/access.2019.2903634 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08662574.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2019.2903634 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2008095228, https://openalex.org/W2790330288, https://openalex.org/W2552760349, https://openalex.org/W2111156486, https://openalex.org/W2070620513, https://openalex.org/W2065414989, https://openalex.org/W2618511022, https://openalex.org/W2115570193, https://openalex.org/W2728799392, https://openalex.org/W2787568736, https://openalex.org/W2056646884, https://openalex.org/W2899077285, https://openalex.org/W2891516347, https://openalex.org/W2792085542, https://openalex.org/W2909676215, https://openalex.org/W1894922855, https://openalex.org/W2738226240, https://openalex.org/W2604493846, https://openalex.org/W2903989726, https://openalex.org/W2092108829, https://openalex.org/W2116353952, https://openalex.org/W2344929049, https://openalex.org/W2004320486, https://openalex.org/W2915278269, https://openalex.org/W2390401404, https://openalex.org/W2213782059, https://openalex.org/W2716009774, https://openalex.org/W2903562285, https://openalex.org/W2089947415, https://openalex.org/W2900987377, https://openalex.org/W2899776223, https://openalex.org/W2796442970, https://openalex.org/W2880420647, https://openalex.org/W2911632638, https://openalex.org/W2263928265, https://openalex.org/W2500334081, https://openalex.org/W2799460054, https://openalex.org/W2287279778, https://openalex.org/W2547802736, https://openalex.org/W2112997716, https://openalex.org/W2077444100, https://openalex.org/W2096529776, https://openalex.org/W2025786233, https://openalex.org/W7017318302, https://openalex.org/W2914984468 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 15, 133 |
| abstract_inverted_index.In | 67 |
| abstract_inverted_index.by | 117, 132, 147 |
| abstract_inverted_index.in | 122, 173 |
| abstract_inverted_index.is | 85, 101, 115, 130 |
| abstract_inverted_index.of | 14, 18, 63, 70, 126, 169, 176 |
| abstract_inverted_index.on | 27, 138 |
| abstract_inverted_index.and | 11, 39, 60, 81, 97, 111, 156 |
| abstract_inverted_index.are | 65, 162 |
| abstract_inverted_index.can | 50 |
| abstract_inverted_index.low | 8 |
| abstract_inverted_index.own | 24 |
| abstract_inverted_index.the | 12, 37, 55, 61, 68, 72, 74, 78, 82, 90, 94, 98, 104, 108, 112, 118, 124, 127, 151, 167, 170, 174 |
| abstract_inverted_index.two | 139 |
| abstract_inverted_index.7-15 | 145 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.This | 34 |
| abstract_inverted_index.aged | 144 |
| abstract_inverted_index.flat | 177 |
| abstract_inverted_index.from | 142 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.out, | 164 |
| abstract_inverted_index.some | 28, 157 |
| abstract_inverted_index.that | 49 |
| abstract_inverted_index.with | 7, 30, 45 |
| abstract_inverted_index.After | 89 |
| abstract_inverted_index.aided | 44 |
| abstract_inverted_index.based | 137 |
| abstract_inverted_index.first | 86 |
| abstract_inverted_index.foot. | 178 |
| abstract_inverted_index.input | 95 |
| abstract_inverted_index.large | 16 |
| abstract_inverted_index.layer | 80, 84, 96, 100, 110, 114 |
| abstract_inverted_index.model | 56 |
| abstract_inverted_index.often | 3 |
| abstract_inverted_index.other | 158 |
| abstract_inverted_index.paper | 35 |
| abstract_inverted_index.smart | 149 |
| abstract_inverted_index.speed | 10 |
| abstract_inverted_index.their | 23 |
| abstract_inverted_index.these | 52 |
| abstract_inverted_index.using | 148 |
| abstract_inverted_index.which | 21, 165 |
| abstract_inverted_index.years | 146 |
| abstract_inverted_index.First, | 54 |
| abstract_inverted_index.amount | 17 |
| abstract_inverted_index.bases, | 59 |
| abstract_inverted_index.double | 46 |
| abstract_inverted_index.given. | 66 |
| abstract_inverted_index.hidden | 79, 99, 109 |
| abstract_inverted_index.limits | 22 |
| abstract_inverted_index.matrix | 76, 92, 106 |
| abstract_inverted_index.models | 2, 161 |
| abstract_inverted_index.neural | 42, 128 |
| abstract_inverted_index.output | 83, 113 |
| abstract_inverted_index.power. | 33 |
| abstract_inverted_index.space, | 20 |
| abstract_inverted_index.weight | 38, 75, 91, 105 |
| abstract_inverted_index.between | 77, 93, 107, 154 |
| abstract_inverted_index.carried | 163 |
| abstract_inverted_index.devices | 29 |
| abstract_inverted_index.machine | 159 |
| abstract_inverted_index.method. | 120, 135 |
| abstract_inverted_index.network | 43, 129 |
| abstract_inverted_index.process | 69 |
| abstract_inverted_index.storage | 19 |
| abstract_inverted_index.children | 143 |
| abstract_inverted_index.datasets | 140 |
| abstract_inverted_index.insoles, | 150 |
| abstract_inverted_index.learning | 1, 160 |
| abstract_inverted_index.network, | 73 |
| abstract_inverted_index.overcome | 51 |
| abstract_inverted_index.proposed | 171 |
| abstract_inverted_index.proposes | 36 |
| abstract_inverted_index.randomly | 87 |
| abstract_inverted_index.WASDNN-DP | 64, 155, 172 |
| abstract_inverted_index.collected | 141 |
| abstract_inverted_index.computing | 32 |
| abstract_inverted_index.diagnosis | 175 |
| abstract_inverted_index.practical | 25 |
| abstract_inverted_index.structure | 40, 125 |
| abstract_inverted_index.WASDNN-DP, | 123 |
| abstract_inverted_index.algorithms | 62 |
| abstract_inverted_index.determined | 131 |
| abstract_inverted_index.generated. | 88 |
| abstract_inverted_index.illustrate | 166 |
| abstract_inverted_index.structure, | 57 |
| abstract_inverted_index.structures | 6 |
| abstract_inverted_index.(WASDNN-DP) | 48 |
| abstract_inverted_index.application | 26 |
| abstract_inverted_index.comparative | 152 |
| abstract_inverted_index.complicated | 5 |
| abstract_inverted_index.determined, | 103 |
| abstract_inverted_index.experiments | 153 |
| abstract_inverted_index.progressive | 134 |
| abstract_inverted_index.requirement | 13 |
| abstract_inverted_index.superiority | 168 |
| abstract_inverted_index.theoretical | 58 |
| abstract_inverted_index.Furthermore, | 121 |
| abstract_inverted_index.analytically | 102 |
| abstract_inverted_index.constructing | 71 |
| abstract_inverted_index.insufficient | 31 |
| abstract_inverted_index.Subsequently, | 136 |
| abstract_inverted_index.computational | 9 |
| abstract_inverted_index.determination | 41 |
| abstract_inverted_index.re-determined | 116 |
| abstract_inverted_index.shortcomings. | 53 |
| abstract_inverted_index.pseudo-inverse | 119 |
| abstract_inverted_index.pseudoinversion | 47 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.93288421 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |