Weighted estimated pseudo-partial likelihood method for correlated failure time data with auxiliary covariates Article Swipe
Yuling Jiao
,
Yanyan Liu
,
Yueyong Shi
,
Zhibin Xu
·
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1360/scm-2019-0242
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1360/scm-2019-0242
quadratic inference function, QIF) 发展了另一种加权估计方程方法.本文在 WLW 模型 [10] 框架下对不完全观 测的带辅助协变量的相关失效时间数据进行分析
Related Topics
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1360/scm-2019-0242
- https://www.sciengine.com/doi/pdf/A3C9E492C2BD47DEBC80495DFF33F628
- OA Status
- bronze
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3180507005
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3180507005Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1360/scm-2019-0242Digital Object Identifier
- Title
-
Weighted estimated pseudo-partial likelihood method for correlated failure time data with auxiliary covariatesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-03-03Full publication date if available
- Authors
-
Yuling Jiao, Yanyan Liu, Yueyong Shi, Zhibin XuList of authors in order
- Landing page
-
https://doi.org/10.1360/scm-2019-0242Publisher landing page
- PDF URL
-
https://www.sciengine.com/doi/pdf/A3C9E492C2BD47DEBC80495DFF33F628Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://www.sciengine.com/doi/pdf/A3C9E492C2BD47DEBC80495DFF33F628Direct OA link when available
- Concepts
-
Covariate, Statistics, Mathematics, Maximum likelihood, Econometrics, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3180507005 |
|---|---|
| doi | https://doi.org/10.1360/scm-2019-0242 |
| ids.doi | https://doi.org/10.1360/scm-2019-0242 |
| ids.mag | 3180507005 |
| ids.openalex | https://openalex.org/W3180507005 |
| fwci | 0.0 |
| type | article |
| title | Weighted estimated pseudo-partial likelihood method for correlated failure time data with auxiliary covariates |
| biblio.issue | 7 |
| biblio.volume | 51 |
| biblio.last_page | 1191 |
| biblio.first_page | 1191 |
| topics[0].id | https://openalex.org/T10243 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9821000099182129 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Bayesian Inference |
| topics[1].id | https://openalex.org/T10968 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9801999926567078 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Distribution Estimation and Applications |
| topics[2].id | https://openalex.org/T10136 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9772999882698059 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C119043178 |
| concepts[0].level | 2 |
| concepts[0].score | 0.888914942741394 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q320723 |
| concepts[0].display_name | Covariate |
| concepts[1].id | https://openalex.org/C105795698 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5921827554702759 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[1].display_name | Statistics |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4521576762199402 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C49781872 |
| concepts[3].level | 2 |
| concepts[3].score | 0.43444138765335083 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1045555 |
| concepts[3].display_name | Maximum likelihood |
| concepts[4].id | https://openalex.org/C149782125 |
| concepts[4].level | 1 |
| concepts[4].score | 0.36267951130867004 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[4].display_name | Econometrics |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.35956311225891113 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/covariate |
| keywords[0].score | 0.888914942741394 |
| keywords[0].display_name | Covariate |
| keywords[1].id | https://openalex.org/keywords/statistics |
| keywords[1].score | 0.5921827554702759 |
| keywords[1].display_name | Statistics |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.4521576762199402 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/maximum-likelihood |
| keywords[3].score | 0.43444138765335083 |
| keywords[3].display_name | Maximum likelihood |
| keywords[4].id | https://openalex.org/keywords/econometrics |
| keywords[4].score | 0.36267951130867004 |
| keywords[4].display_name | Econometrics |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.35956311225891113 |
| keywords[5].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.1360/scm-2019-0242 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210169495 |
| locations[0].source.issn | 1674-7216, 2095-9427 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1674-7216 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Scientia Sinica Mathematica |
| locations[0].source.host_organization | https://openalex.org/P4310319973 |
| locations[0].source.host_organization_name | Science China Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319973 |
| locations[0].source.host_organization_lineage_names | Science China Press |
| locations[0].license | |
| locations[0].pdf_url | https://www.sciengine.com/doi/pdf/A3C9E492C2BD47DEBC80495DFF33F628 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | SCIENTIA SINICA Mathematica |
| locations[0].landing_page_url | https://doi.org/10.1360/scm-2019-0242 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5080185313 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2762-0421 |
| authorships[0].author.display_name | Yuling Jiao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiao Yuling |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100416810 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1405-7345 |
| authorships[1].author.display_name | Yanyan Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu Yanyan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5083578298 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7419-8337 |
| authorships[2].author.display_name | Yueyong Shi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shi Yueyong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5010301078 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8922-9503 |
| authorships[3].author.display_name | Zhibin Xu |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xu Zhibin |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.sciengine.com/doi/pdf/A3C9E492C2BD47DEBC80495DFF33F628 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Weighted estimated pseudo-partial likelihood method for correlated failure time data with auxiliary covariates |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10243 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9821000099182129 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Bayesian Inference |
| related_works | https://openalex.org/W2985746494, https://openalex.org/W4206042385, https://openalex.org/W2511384863, https://openalex.org/W2096089271, https://openalex.org/W2923628599, https://openalex.org/W2051519658, https://openalex.org/W2002304499, https://openalex.org/W2994787386, https://openalex.org/W2014100433, https://openalex.org/W1599085740 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1360/scm-2019-0242 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210169495 |
| best_oa_location.source.issn | 1674-7216, 2095-9427 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1674-7216 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Scientia Sinica Mathematica |
| best_oa_location.source.host_organization | https://openalex.org/P4310319973 |
| best_oa_location.source.host_organization_name | Science China Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319973 |
| best_oa_location.source.host_organization_lineage_names | Science China Press |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.sciengine.com/doi/pdf/A3C9E492C2BD47DEBC80495DFF33F628 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | SCIENTIA SINICA Mathematica |
| best_oa_location.landing_page_url | https://doi.org/10.1360/scm-2019-0242 |
| primary_location.id | doi:10.1360/scm-2019-0242 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210169495 |
| primary_location.source.issn | 1674-7216, 2095-9427 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1674-7216 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Scientia Sinica Mathematica |
| primary_location.source.host_organization | https://openalex.org/P4310319973 |
| primary_location.source.host_organization_name | Science China Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319973 |
| primary_location.source.host_organization_lineage_names | Science China Press |
| primary_location.license | |
| primary_location.pdf_url | https://www.sciengine.com/doi/pdf/A3C9E492C2BD47DEBC80495DFF33F628 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | SCIENTIA SINICA Mathematica |
| primary_location.landing_page_url | https://doi.org/10.1360/scm-2019-0242 |
| publication_date | 2020-03-03 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2028591882, https://openalex.org/W2152756304, https://openalex.org/W3107982686, https://openalex.org/W2084349335, https://openalex.org/W2585382523, https://openalex.org/W67376296, https://openalex.org/W2009622908, https://openalex.org/W2019780852, https://openalex.org/W2038640130, https://openalex.org/W1958271975, https://openalex.org/W1964577759, https://openalex.org/W1551874454, https://openalex.org/W2093040926, https://openalex.org/W1986705681, https://openalex.org/W2071800524, https://openalex.org/W1969178998, https://openalex.org/W2025672869, https://openalex.org/W2795680774, https://openalex.org/W4301042084, https://openalex.org/W2149290041, https://openalex.org/W2092648747, https://openalex.org/W2124023666, https://openalex.org/W2099434245, https://openalex.org/W2085207239, https://openalex.org/W2612271622, https://openalex.org/W1998543014, https://openalex.org/W2091532036 |
| referenced_works_count | 27 |
| abstract_inverted_index.WLW | 5 |
| abstract_inverted_index.QIF) | 3 |
| abstract_inverted_index.[10] | 7 |
| abstract_inverted_index.模型 | 6 |
| abstract_inverted_index.function, | 2 |
| abstract_inverted_index.inference | 1 |
| abstract_inverted_index.quadratic | 0 |
| abstract_inverted_index.框架下对不完全观 | 8 |
| abstract_inverted_index.发展了另一种加权估计方程方法.本文在 | 4 |
| abstract_inverted_index.测的带辅助协变量的相关失效时间数据进行分析 | 9 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.20697244 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |