Well Detection in Satellite Images using Convolutional Neural Networks Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.5220/0007734901170125
The Government of India conducts a well census every five years. It is time-consuming, costly, and usually incomplete. By using transfer learning-based object detection algorithms, we have built a system for the automatic detection of wells in satellite images. We analyze the performance of three object detection algorithms - Convolutional Neural Network, HaarCascade, and Histogram of Oriented Gradients on the task of well detection and find that the Convolutional Neural Network based YOLOv2 performs best and forms the core of our system. Our current system has a precision value of 0.95 and a recall value of 0.91 on our dataset. The main contribution of our work is to create a novel open-source system for well detection in satellite images and create an associated dataset which will be put in the public domain. A related contribution is the development of a general purpose satellite image annotation system to annotate and validate objects in satellite images. While our focus is on well detection, the system is general purpose and can be used for detection of other objects as well.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5220/0007734901170125
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2947593667
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2947593667Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5220/0007734901170125Digital Object Identifier
- Title
-
Well Detection in Satellite Images using Convolutional Neural NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Pratik Wagh, Debanjan Das, Om DamaniList of authors in order
- Landing page
-
https://doi.org/10.5220/0007734901170125Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5220/0007734901170125Direct OA link when available
- Concepts
-
Computer science, Convolutional neural network, Object detection, Artificial intelligence, Satellite, Histogram, Focus (optics), Deep learning, Transfer of learning, Computer vision, Pattern recognition (psychology), Image (mathematics), Engineering, Aerospace engineering, Physics, OpticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2947593667 |
|---|---|
| doi | https://doi.org/10.5220/0007734901170125 |
| ids.doi | https://doi.org/10.5220/0007734901170125 |
| ids.mag | 2947593667 |
| ids.openalex | https://openalex.org/W2947593667 |
| fwci | 0.0 |
| type | article |
| title | Well Detection in Satellite Images using Convolutional Neural Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 125 |
| biblio.first_page | 117 |
| topics[0].id | https://openalex.org/T12282 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9628999829292297 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Mineral Processing and Grinding |
| topics[1].id | https://openalex.org/T12543 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9319999814033508 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Groundwater and Watershed Analysis |
| topics[2].id | https://openalex.org/T11801 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9279999732971191 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Reservoir Engineering and Simulation Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8345629572868347 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8222667574882507 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C2776151529 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7097437977790833 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[2].display_name | Object detection |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6607688665390015 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C19269812 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5792635083198547 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q26540 |
| concepts[4].display_name | Satellite |
| concepts[5].id | https://openalex.org/C53533937 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5187838077545166 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q185020 |
| concepts[5].display_name | Histogram |
| concepts[6].id | https://openalex.org/C192209626 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5048009157180786 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[6].display_name | Focus (optics) |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5007188320159912 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C150899416 |
| concepts[8].level | 2 |
| concepts[8].score | 0.49866437911987305 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[8].display_name | Transfer of learning |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4507862329483032 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43751251697540283 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.2591823935508728 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C146978453 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[13].display_name | Aerospace engineering |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C120665830 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[15].display_name | Optics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8345629572868347 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.8222667574882507 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/object-detection |
| keywords[2].score | 0.7097437977790833 |
| keywords[2].display_name | Object detection |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6607688665390015 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/satellite |
| keywords[4].score | 0.5792635083198547 |
| keywords[4].display_name | Satellite |
| keywords[5].id | https://openalex.org/keywords/histogram |
| keywords[5].score | 0.5187838077545166 |
| keywords[5].display_name | Histogram |
| keywords[6].id | https://openalex.org/keywords/focus |
| keywords[6].score | 0.5048009157180786 |
| keywords[6].display_name | Focus (optics) |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.5007188320159912 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[8].score | 0.49866437911987305 |
| keywords[8].display_name | Transfer of learning |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.4507862329483032 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.43751251697540283 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.2591823935508728 |
| keywords[11].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.5220/0007734901170125 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management |
| locations[0].landing_page_url | https://doi.org/10.5220/0007734901170125 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5078139608 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Pratik Wagh |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I162827531 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science & Engineering, IIT Bombay, Mumbai and India, --- Select a Country --- |
| authorships[0].institutions[0].id | https://openalex.org/I162827531 |
| authorships[0].institutions[0].ror | https://ror.org/02qyf5152 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I162827531 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Institute of Technology Bombay |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pratik Wagh |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science & Engineering, IIT Bombay, Mumbai and India, --- Select a Country --- |
| authorships[1].author.id | https://openalex.org/A5068887717 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3450-9767 |
| authorships[1].author.display_name | Debanjan Das |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I162827531 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science & Engineering, IIT Bombay, Mumbai and India, --- Select a Country --- |
| authorships[1].institutions[0].id | https://openalex.org/I162827531 |
| authorships[1].institutions[0].ror | https://ror.org/02qyf5152 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I162827531 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Institute of Technology Bombay |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Debanjan Das |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science & Engineering, IIT Bombay, Mumbai and India, --- Select a Country --- |
| authorships[2].author.id | https://openalex.org/A5009328068 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4043-9806 |
| authorships[2].author.display_name | Om Damani |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I162827531 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science & Engineering, IIT Bombay, Mumbai and India, --- Select a Country --- |
| authorships[2].institutions[0].id | https://openalex.org/I162827531 |
| authorships[2].institutions[0].ror | https://ror.org/02qyf5152 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I162827531 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Technology Bombay |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Om Damani |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science & Engineering, IIT Bombay, Mumbai and India, --- Select a Country --- |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5220/0007734901170125 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Well Detection in Satellite Images using Convolutional Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12282 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9628999829292297 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Mineral Processing and Grinding |
| related_works | https://openalex.org/W4226493464, https://openalex.org/W4312417841, https://openalex.org/W3133861977, https://openalex.org/W3183901164, https://openalex.org/W4206357785, https://openalex.org/W4281381188, https://openalex.org/W2951211570, https://openalex.org/W3192840557, https://openalex.org/W3176438653, https://openalex.org/W3103566983 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5220/0007734901170125 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management |
| best_oa_location.landing_page_url | https://doi.org/10.5220/0007734901170125 |
| primary_location.id | doi:10.5220/0007734901170125 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management |
| primary_location.landing_page_url | https://doi.org/10.5220/0007734901170125 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 48 |
| abstract_inverted_index.A | 132 |
| abstract_inverted_index.a | 5, 28, 86, 92, 109, 139 |
| abstract_inverted_index.By | 18 |
| abstract_inverted_index.It | 11 |
| abstract_inverted_index.We | 39 |
| abstract_inverted_index.an | 121 |
| abstract_inverted_index.as | 175 |
| abstract_inverted_index.be | 126, 168 |
| abstract_inverted_index.in | 36, 116, 128, 151 |
| abstract_inverted_index.is | 12, 106, 135, 157, 163 |
| abstract_inverted_index.of | 2, 34, 43, 55, 61, 79, 89, 95, 103, 138, 172 |
| abstract_inverted_index.on | 58, 97, 158 |
| abstract_inverted_index.to | 107, 146 |
| abstract_inverted_index.we | 25 |
| abstract_inverted_index.Our | 82 |
| abstract_inverted_index.The | 0, 100 |
| abstract_inverted_index.and | 15, 53, 64, 75, 91, 119, 148, 166 |
| abstract_inverted_index.can | 167 |
| abstract_inverted_index.for | 30, 113, 170 |
| abstract_inverted_index.has | 85 |
| abstract_inverted_index.our | 80, 98, 104, 155 |
| abstract_inverted_index.put | 127 |
| abstract_inverted_index.the | 31, 41, 59, 67, 77, 129, 136, 161 |
| abstract_inverted_index.0.91 | 96 |
| abstract_inverted_index.0.95 | 90 |
| abstract_inverted_index.best | 74 |
| abstract_inverted_index.core | 78 |
| abstract_inverted_index.find | 65 |
| abstract_inverted_index.five | 9 |
| abstract_inverted_index.have | 26 |
| abstract_inverted_index.main | 101 |
| abstract_inverted_index.task | 60 |
| abstract_inverted_index.that | 66 |
| abstract_inverted_index.used | 169 |
| abstract_inverted_index.well | 6, 62, 114, 159 |
| abstract_inverted_index.will | 125 |
| abstract_inverted_index.work | 105 |
| abstract_inverted_index.India | 3 |
| abstract_inverted_index.While | 154 |
| abstract_inverted_index.based | 71 |
| abstract_inverted_index.built | 27 |
| abstract_inverted_index.every | 8 |
| abstract_inverted_index.focus | 156 |
| abstract_inverted_index.forms | 76 |
| abstract_inverted_index.image | 143 |
| abstract_inverted_index.novel | 110 |
| abstract_inverted_index.other | 173 |
| abstract_inverted_index.three | 44 |
| abstract_inverted_index.using | 19 |
| abstract_inverted_index.value | 88, 94 |
| abstract_inverted_index.well. | 176 |
| abstract_inverted_index.wells | 35 |
| abstract_inverted_index.which | 124 |
| abstract_inverted_index.Neural | 50, 69 |
| abstract_inverted_index.YOLOv2 | 72 |
| abstract_inverted_index.census | 7 |
| abstract_inverted_index.create | 108, 120 |
| abstract_inverted_index.images | 118 |
| abstract_inverted_index.object | 22, 45 |
| abstract_inverted_index.public | 130 |
| abstract_inverted_index.recall | 93 |
| abstract_inverted_index.system | 29, 84, 112, 145, 162 |
| abstract_inverted_index.years. | 10 |
| abstract_inverted_index.Network | 70 |
| abstract_inverted_index.analyze | 40 |
| abstract_inverted_index.costly, | 14 |
| abstract_inverted_index.current | 83 |
| abstract_inverted_index.dataset | 123 |
| abstract_inverted_index.domain. | 131 |
| abstract_inverted_index.general | 140, 164 |
| abstract_inverted_index.images. | 38, 153 |
| abstract_inverted_index.objects | 150, 174 |
| abstract_inverted_index.purpose | 141, 165 |
| abstract_inverted_index.related | 133 |
| abstract_inverted_index.system. | 81 |
| abstract_inverted_index.usually | 16 |
| abstract_inverted_index.Network, | 51 |
| abstract_inverted_index.Oriented | 56 |
| abstract_inverted_index.annotate | 147 |
| abstract_inverted_index.conducts | 4 |
| abstract_inverted_index.dataset. | 99 |
| abstract_inverted_index.performs | 73 |
| abstract_inverted_index.transfer | 20 |
| abstract_inverted_index.validate | 149 |
| abstract_inverted_index.Gradients | 57 |
| abstract_inverted_index.Histogram | 54 |
| abstract_inverted_index.automatic | 32 |
| abstract_inverted_index.detection | 23, 33, 46, 63, 115, 171 |
| abstract_inverted_index.precision | 87 |
| abstract_inverted_index.satellite | 37, 117, 142, 152 |
| abstract_inverted_index.Government | 1 |
| abstract_inverted_index.algorithms | 47 |
| abstract_inverted_index.annotation | 144 |
| abstract_inverted_index.associated | 122 |
| abstract_inverted_index.detection, | 160 |
| abstract_inverted_index.algorithms, | 24 |
| abstract_inverted_index.development | 137 |
| abstract_inverted_index.incomplete. | 17 |
| abstract_inverted_index.open-source | 111 |
| abstract_inverted_index.performance | 42 |
| abstract_inverted_index.HaarCascade, | 52 |
| abstract_inverted_index.contribution | 102, 134 |
| abstract_inverted_index.Convolutional | 49, 68 |
| abstract_inverted_index.learning-based | 21 |
| abstract_inverted_index.time-consuming, | 13 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.04881924 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |