Well-mixed bistable system. Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0121681.g003
· OA: W2322943937
<p>(A) Schematic of well-mixed system with volume <i>V</i> (diffusion constant <i>D</i> is infinitely large). (B) Exemplar time trace for <i>x</i> = <i>X</i>/<i>V</i> from Gillespie algorithm for standard parameters with <i>V</i> = 10 and <i>B</i> = 4.0. (C) Exact probability distribution <i>p</i>(<i>x</i>) at steady state from master <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0121681#pone.0121681.e004" target="_blank">Equation 3</a> for <i>V</i> = 10 (dark symbols) and 30 (light symbols) with <i>B</i> = 4.0. (D) Values of <i>p</i>(<i>x</i>) evaluated at three steady states for different values of <i>B</i>. (E) Transition rates from a modified Fokker-Planck approximation valid for large <i>V</i> (first-mean passage time; see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0121681#pone.0121681.s001" target="_blank">S1 Text</a> for details). Red arrows indicate exchange of stability. (F) Maxwell-like construction (MC), indicating coexistence between two phases (low and high states) at <i>B</i> ∼ 3.7, defined by equal transition rates in (E). At this critical value of <i>B</i> a first-order phase transition occurs (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0121681#pone.0121681.s001" target="_blank">S1 Text</a> for an analytical derivation based on simpler potential). (G) Relative strength of fluctuations (standard deviation over mean) as a function of <i>B</i> for <i>V</i> = 30 (solid line), 50 (dashed line), and 100 (dotted line). (Inset) Unnormalized variances.</p>