Whale Optimization Algorithm with a Hybrid Relation Vector Machine: A Highly Robust Respiratory Rate Prediction Model Using Photoplethysmography Signals Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/diagnostics13050913
Due to the simplicity and convenience of PPG signal acquisition, the detection of the respiration rate based on the PPG signal is more suitable for dynamic monitoring than the impedance spirometry method, but it is challenging to achieve accurate predictions from low-signal-quality PPG signals, especially in intensive-care patients with weak PPG signals. The goal of this study was to construct a simple model for respiration rate estimation based on PPG signals using a machine-learning approach fusing signal quality metrics to improve the accuracy of estimation despite the low-signal-quality PPG signals. In this study, we propose a method based on the whale optimization algorithm (WOA) with a hybrid relation vector machine (HRVM) to construct a highly robust model considering signal quality factors to estimate RR from PPG signals in real time. To detect the performance of the proposed model, we simultaneously recorded PPG signals and impedance respiratory rates obtained from the BIDMC dataset. The results of the respiration rate prediction model proposed in this study showed that the MAE and RMSE were 0.71 and 0.99 breaths/min, respectively, in the training set, and 1.24 and 1.79 breaths/min, respectively, in the test set. Compared without taking signal quality factors into account, MAE and RMSE are reduced by 1.28 and 1.67 breaths/min, respectively, in the training set, and reduced by 0.62 and 0.65 breaths/min in the test set. Even in the nonnormal breathing range below 12 bpm and above 24 bpm, the MAE reached 2.68 and 4.28 breaths/min, respectively, and the RMSE reached 3.52 and 5.01 breaths/min, respectively. The results show that the model that considers the PPG signal quality and respiratory quality proposed in this study has obvious advantages and application potential in predicting the respiration rate to cope with the problem of low signal quality.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/diagnostics13050913
- https://www.mdpi.com/2075-4418/13/5/913/pdf?version=1677585304
- OA Status
- gold
- Cited By
- 6
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4322741392
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4322741392Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/diagnostics13050913Digital Object Identifier
- Title
-
Whale Optimization Algorithm with a Hybrid Relation Vector Machine: A Highly Robust Respiratory Rate Prediction Model Using Photoplethysmography SignalsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-28Full publication date if available
- Authors
-
Xuhao Dong, Ziyi Wang, Liangli Cao, Zhencheng Chen, Yongbo LiangList of authors in order
- Landing page
-
https://doi.org/10.3390/diagnostics13050913Publisher landing page
- PDF URL
-
https://www.mdpi.com/2075-4418/13/5/913/pdf?version=1677585304Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2075-4418/13/5/913/pdf?version=1677585304Direct OA link when available
- Concepts
-
Photoplethysmogram, Respiratory rate, Computer science, SIGNAL (programming language), Test set, Pattern recognition (psychology), Artificial intelligence, Respiration rate, Mean squared error, Mathematics, Respiration, Heart rate, Statistics, Medicine, Computer vision, Filter (signal processing), Programming language, Anatomy, Blood pressure, RadiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 2, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4322741392 |
|---|---|
| doi | https://doi.org/10.3390/diagnostics13050913 |
| ids.doi | https://doi.org/10.3390/diagnostics13050913 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36900057 |
| ids.openalex | https://openalex.org/W4322741392 |
| fwci | 0.9532683 |
| type | article |
| title | Whale Optimization Algorithm with a Hybrid Relation Vector Machine: A Highly Robust Respiratory Rate Prediction Model Using Photoplethysmography Signals |
| biblio.issue | 5 |
| biblio.volume | 13 |
| biblio.last_page | 913 |
| biblio.first_page | 913 |
| topics[0].id | https://openalex.org/T11196 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Non-Invasive Vital Sign Monitoring |
| topics[1].id | https://openalex.org/T11700 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2746 |
| topics[1].subfield.display_name | Surgery |
| topics[1].display_name | Hemodynamic Monitoring and Therapy |
| topics[2].id | https://openalex.org/T10745 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9986000061035156 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | Heart Rate Variability and Autonomic Control |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C116390426 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6517759561538696 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7187885 |
| concepts[0].display_name | Photoplethysmogram |
| concepts[1].id | https://openalex.org/C8213797 |
| concepts[1].level | 4 |
| concepts[1].score | 0.6173840165138245 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q754250 |
| concepts[1].display_name | Respiratory rate |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5881510376930237 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2779843651 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5718929171562195 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[3].display_name | SIGNAL (programming language) |
| concepts[4].id | https://openalex.org/C169903167 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49715593457221985 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[4].display_name | Test set |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4731760323047638 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4359491467475891 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C116270902 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4304547905921936 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7315895 |
| concepts[7].display_name | Respiration rate |
| concepts[8].id | https://openalex.org/C139945424 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4243735671043396 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[8].display_name | Mean squared error |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.26541948318481445 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C182215343 |
| concepts[10].level | 2 |
| concepts[10].score | 0.2428986132144928 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q472287 |
| concepts[10].display_name | Respiration |
| concepts[11].id | https://openalex.org/C2777953023 |
| concepts[11].level | 3 |
| concepts[11].score | 0.16241997480392456 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1073121 |
| concepts[11].display_name | Heart rate |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.15278175473213196 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.13375264406204224 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C31972630 |
| concepts[14].level | 1 |
| concepts[14].score | 0.06518110632896423 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[14].display_name | Computer vision |
| concepts[15].id | https://openalex.org/C106131492 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[15].display_name | Filter (signal processing) |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| concepts[17].id | https://openalex.org/C105702510 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q514 |
| concepts[17].display_name | Anatomy |
| concepts[18].id | https://openalex.org/C84393581 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q82642 |
| concepts[18].display_name | Blood pressure |
| concepts[19].id | https://openalex.org/C126838900 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[19].display_name | Radiology |
| keywords[0].id | https://openalex.org/keywords/photoplethysmogram |
| keywords[0].score | 0.6517759561538696 |
| keywords[0].display_name | Photoplethysmogram |
| keywords[1].id | https://openalex.org/keywords/respiratory-rate |
| keywords[1].score | 0.6173840165138245 |
| keywords[1].display_name | Respiratory rate |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5881510376930237 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/signal |
| keywords[3].score | 0.5718929171562195 |
| keywords[3].display_name | SIGNAL (programming language) |
| keywords[4].id | https://openalex.org/keywords/test-set |
| keywords[4].score | 0.49715593457221985 |
| keywords[4].display_name | Test set |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.4731760323047638 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4359491467475891 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/respiration-rate |
| keywords[7].score | 0.4304547905921936 |
| keywords[7].display_name | Respiration rate |
| keywords[8].id | https://openalex.org/keywords/mean-squared-error |
| keywords[8].score | 0.4243735671043396 |
| keywords[8].display_name | Mean squared error |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.26541948318481445 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/respiration |
| keywords[10].score | 0.2428986132144928 |
| keywords[10].display_name | Respiration |
| keywords[11].id | https://openalex.org/keywords/heart-rate |
| keywords[11].score | 0.16241997480392456 |
| keywords[11].display_name | Heart rate |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.15278175473213196 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/medicine |
| keywords[13].score | 0.13375264406204224 |
| keywords[13].display_name | Medicine |
| keywords[14].id | https://openalex.org/keywords/computer-vision |
| keywords[14].score | 0.06518110632896423 |
| keywords[14].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.3390/diagnostics13050913 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172076 |
| locations[0].source.issn | 2075-4418 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2075-4418 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Diagnostics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2075-4418/13/5/913/pdf?version=1677585304 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Diagnostics |
| locations[0].landing_page_url | https://doi.org/10.3390/diagnostics13050913 |
| locations[1].id | pmid:36900057 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Diagnostics (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36900057 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10000566 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10000566/pdf/diagnostics-13-00913.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Diagnostics (Basel) |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10000566 |
| locations[3].id | pmh:oai:doaj.org/article:a7ad3aee7d764a27be19b819b5e5512d |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Diagnostics, Vol 13, Iss 5, p 913 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/a7ad3aee7d764a27be19b819b5e5512d |
| locations[4].id | pmh:oai:mdpi.com:/2075-4418/13/5/913/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Diagnostics |
| locations[4].landing_page_url | https://dx.doi.org/10.3390/diagnostics13050913 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5044413422 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xuhao Dong |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I5343935 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China |
| authorships[0].institutions[0].id | https://openalex.org/I5343935 |
| authorships[0].institutions[0].ror | https://ror.org/05arjae42 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I5343935 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guilin University of Electronic Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xuhao Dong |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China |
| authorships[1].author.id | https://openalex.org/A5100441374 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4144-8034 |
| authorships[1].author.display_name | Ziyi Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I5343935 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China |
| authorships[1].institutions[0].id | https://openalex.org/I5343935 |
| authorships[1].institutions[0].ror | https://ror.org/05arjae42 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I5343935 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Guilin University of Electronic Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ziyi Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China |
| authorships[2].author.id | https://openalex.org/A5084926217 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0567-7577 |
| authorships[2].author.display_name | Liangli Cao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I5343935 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China |
| authorships[2].institutions[0].id | https://openalex.org/I5343935 |
| authorships[2].institutions[0].ror | https://ror.org/05arjae42 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I5343935 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guilin University of Electronic Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liangli Cao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China |
| authorships[3].author.id | https://openalex.org/A5041982037 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8544-2291 |
| authorships[3].author.display_name | Zhencheng Chen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].raw_affiliation_string | Guangxi Engineering Technology Research Center of Human Physiological Information Noninvasive Detection, Guilin 541004, China |
| authorships[3].affiliations[1].raw_affiliation_string | Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin 541004, China |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I5343935 |
| authorships[3].affiliations[2].raw_affiliation_string | Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin 541004, China; Guangxi Engineering Technology Research Center of Human Physiological Information Noninvasive Detection, Guilin 541004, China; School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China |
| authorships[3].institutions[0].id | https://openalex.org/I5343935 |
| authorships[3].institutions[0].ror | https://ror.org/05arjae42 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I5343935 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Guilin University of Electronic Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhencheng Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin 541004, China, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin 541004, China; Guangxi Engineering Technology Research Center of Human Physiological Information Noninvasive Detection, Guilin 541004, China; School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China, Guangxi Engineering Technology Research Center of Human Physiological Information Noninvasive Detection, Guilin 541004, China |
| authorships[4].author.id | https://openalex.org/A5056318128 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8337-6147 |
| authorships[4].author.display_name | Yongbo Liang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].raw_affiliation_string | Guangxi Engineering Technology Research Center of Human Physiological Information Noninvasive Detection, Guilin 541004, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I5343935 |
| authorships[4].affiliations[1].raw_affiliation_string | Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin 541004, China; Guangxi Engineering Technology Research Center of Human Physiological Information Noninvasive Detection, Guilin 541004, China; School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China |
| authorships[4].affiliations[2].raw_affiliation_string | Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin 541004, China |
| authorships[4].institutions[0].id | https://openalex.org/I5343935 |
| authorships[4].institutions[0].ror | https://ror.org/05arjae42 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I5343935 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Guilin University of Electronic Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yongbo Liang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin 541004, China, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin 541004, China; Guangxi Engineering Technology Research Center of Human Physiological Information Noninvasive Detection, Guilin 541004, China; School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China, Guangxi Engineering Technology Research Center of Human Physiological Information Noninvasive Detection, Guilin 541004, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2075-4418/13/5/913/pdf?version=1677585304 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Whale Optimization Algorithm with a Hybrid Relation Vector Machine: A Highly Robust Respiratory Rate Prediction Model Using Photoplethysmography Signals |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11196 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Non-Invasive Vital Sign Monitoring |
| related_works | https://openalex.org/W4200278145, https://openalex.org/W2767005907, https://openalex.org/W1971808924, https://openalex.org/W2535581747, https://openalex.org/W4306362106, https://openalex.org/W2066259560, https://openalex.org/W2936194951, https://openalex.org/W2115958963, https://openalex.org/W2972128857, https://openalex.org/W4322741392 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/diagnostics13050913 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172076 |
| best_oa_location.source.issn | 2075-4418 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2075-4418 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Diagnostics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2075-4418/13/5/913/pdf?version=1677585304 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Diagnostics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/diagnostics13050913 |
| primary_location.id | doi:10.3390/diagnostics13050913 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172076 |
| primary_location.source.issn | 2075-4418 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2075-4418 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Diagnostics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2075-4418/13/5/913/pdf?version=1677585304 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Diagnostics |
| primary_location.landing_page_url | https://doi.org/10.3390/diagnostics13050913 |
| publication_date | 2023-02-28 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2078934723, https://openalex.org/W2559847985, https://openalex.org/W4280627315, https://openalex.org/W4245509891, https://openalex.org/W2790575186, https://openalex.org/W2592263954, https://openalex.org/W2939797706, https://openalex.org/W2743256035, https://openalex.org/W4206280709, https://openalex.org/W1975267419, https://openalex.org/W2124106073, https://openalex.org/W2075109859, https://openalex.org/W2776923905, https://openalex.org/W2760212863, https://openalex.org/W2221868121, https://openalex.org/W2009465763, https://openalex.org/W3144190302, https://openalex.org/W2916455725, https://openalex.org/W3014223730, https://openalex.org/W2161713936, https://openalex.org/W2594804265, https://openalex.org/W2323857325, https://openalex.org/W3182487637, https://openalex.org/W4292547151, https://openalex.org/W2522264526, https://openalex.org/W3174466491, https://openalex.org/W2794490067, https://openalex.org/W2290883490, https://openalex.org/W3082052804, https://openalex.org/W3158219704 |
| referenced_works_count | 30 |
| abstract_inverted_index.a | 60, 72, 95, 105, 113 |
| abstract_inverted_index.12 | 231 |
| abstract_inverted_index.24 | 235 |
| abstract_inverted_index.In | 90 |
| abstract_inverted_index.RR | 123 |
| abstract_inverted_index.To | 130 |
| abstract_inverted_index.by | 203, 215 |
| abstract_inverted_index.in | 45, 127, 161, 176, 186, 209, 220, 225, 270, 279 |
| abstract_inverted_index.is | 21, 34 |
| abstract_inverted_index.it | 33 |
| abstract_inverted_index.of | 6, 12, 54, 83, 134, 154, 289 |
| abstract_inverted_index.on | 17, 68, 98 |
| abstract_inverted_index.to | 1, 36, 58, 79, 111, 121, 284 |
| abstract_inverted_index.we | 93, 138 |
| abstract_inverted_index.Due | 0 |
| abstract_inverted_index.MAE | 167, 198, 238 |
| abstract_inverted_index.PPG | 7, 19, 42, 50, 69, 88, 125, 141, 263 |
| abstract_inverted_index.The | 52, 152, 254 |
| abstract_inverted_index.and | 4, 143, 168, 172, 180, 182, 199, 205, 213, 217, 233, 241, 245, 250, 266, 276 |
| abstract_inverted_index.are | 201 |
| abstract_inverted_index.bpm | 232 |
| abstract_inverted_index.but | 32 |
| abstract_inverted_index.for | 24, 63 |
| abstract_inverted_index.has | 273 |
| abstract_inverted_index.low | 290 |
| abstract_inverted_index.the | 2, 10, 13, 18, 28, 81, 86, 99, 132, 135, 149, 155, 166, 177, 187, 210, 221, 226, 237, 246, 258, 262, 281, 287 |
| abstract_inverted_index.was | 57 |
| abstract_inverted_index.0.62 | 216 |
| abstract_inverted_index.0.65 | 218 |
| abstract_inverted_index.0.71 | 171 |
| abstract_inverted_index.0.99 | 173 |
| abstract_inverted_index.1.24 | 181 |
| abstract_inverted_index.1.28 | 204 |
| abstract_inverted_index.1.67 | 206 |
| abstract_inverted_index.1.79 | 183 |
| abstract_inverted_index.2.68 | 240 |
| abstract_inverted_index.3.52 | 249 |
| abstract_inverted_index.4.28 | 242 |
| abstract_inverted_index.5.01 | 251 |
| abstract_inverted_index.Even | 224 |
| abstract_inverted_index.RMSE | 169, 200, 247 |
| abstract_inverted_index.bpm, | 236 |
| abstract_inverted_index.cope | 285 |
| abstract_inverted_index.from | 40, 124, 148 |
| abstract_inverted_index.goal | 53 |
| abstract_inverted_index.into | 196 |
| abstract_inverted_index.more | 22 |
| abstract_inverted_index.rate | 15, 65, 157, 283 |
| abstract_inverted_index.real | 128 |
| abstract_inverted_index.set, | 179, 212 |
| abstract_inverted_index.set. | 189, 223 |
| abstract_inverted_index.show | 256 |
| abstract_inverted_index.test | 188, 222 |
| abstract_inverted_index.than | 27 |
| abstract_inverted_index.that | 165, 257, 260 |
| abstract_inverted_index.this | 55, 91, 162, 271 |
| abstract_inverted_index.weak | 49 |
| abstract_inverted_index.were | 170 |
| abstract_inverted_index.with | 48, 104, 286 |
| abstract_inverted_index.(WOA) | 103 |
| abstract_inverted_index.BIDMC | 150 |
| abstract_inverted_index.above | 234 |
| abstract_inverted_index.based | 16, 67, 97 |
| abstract_inverted_index.below | 230 |
| abstract_inverted_index.model | 62, 116, 159, 259 |
| abstract_inverted_index.range | 229 |
| abstract_inverted_index.rates | 146 |
| abstract_inverted_index.study | 56, 163, 272 |
| abstract_inverted_index.time. | 129 |
| abstract_inverted_index.using | 71 |
| abstract_inverted_index.whale | 100 |
| abstract_inverted_index.(HRVM) | 110 |
| abstract_inverted_index.detect | 131 |
| abstract_inverted_index.fusing | 75 |
| abstract_inverted_index.highly | 114 |
| abstract_inverted_index.hybrid | 106 |
| abstract_inverted_index.method | 96 |
| abstract_inverted_index.model, | 137 |
| abstract_inverted_index.robust | 115 |
| abstract_inverted_index.showed | 164 |
| abstract_inverted_index.signal | 8, 20, 76, 118, 193, 264, 291 |
| abstract_inverted_index.simple | 61 |
| abstract_inverted_index.study, | 92 |
| abstract_inverted_index.taking | 192 |
| abstract_inverted_index.vector | 108 |
| abstract_inverted_index.achieve | 37 |
| abstract_inverted_index.despite | 85 |
| abstract_inverted_index.dynamic | 25 |
| abstract_inverted_index.factors | 120, 195 |
| abstract_inverted_index.improve | 80 |
| abstract_inverted_index.machine | 109 |
| abstract_inverted_index.method, | 31 |
| abstract_inverted_index.metrics | 78 |
| abstract_inverted_index.obvious | 274 |
| abstract_inverted_index.problem | 288 |
| abstract_inverted_index.propose | 94 |
| abstract_inverted_index.quality | 77, 119, 194, 265, 268 |
| abstract_inverted_index.reached | 239, 248 |
| abstract_inverted_index.reduced | 202, 214 |
| abstract_inverted_index.results | 153, 255 |
| abstract_inverted_index.signals | 70, 126, 142 |
| abstract_inverted_index.without | 191 |
| abstract_inverted_index.Compared | 190 |
| abstract_inverted_index.account, | 197 |
| abstract_inverted_index.accuracy | 82 |
| abstract_inverted_index.accurate | 38 |
| abstract_inverted_index.approach | 74 |
| abstract_inverted_index.dataset. | 151 |
| abstract_inverted_index.estimate | 122 |
| abstract_inverted_index.obtained | 147 |
| abstract_inverted_index.patients | 47 |
| abstract_inverted_index.proposed | 136, 160, 269 |
| abstract_inverted_index.quality. | 292 |
| abstract_inverted_index.recorded | 140 |
| abstract_inverted_index.relation | 107 |
| abstract_inverted_index.signals, | 43 |
| abstract_inverted_index.signals. | 51, 89 |
| abstract_inverted_index.suitable | 23 |
| abstract_inverted_index.training | 178, 211 |
| abstract_inverted_index.algorithm | 102 |
| abstract_inverted_index.breathing | 228 |
| abstract_inverted_index.considers | 261 |
| abstract_inverted_index.construct | 59, 112 |
| abstract_inverted_index.detection | 11 |
| abstract_inverted_index.impedance | 29, 144 |
| abstract_inverted_index.nonnormal | 227 |
| abstract_inverted_index.potential | 278 |
| abstract_inverted_index.advantages | 275 |
| abstract_inverted_index.especially | 44 |
| abstract_inverted_index.estimation | 66, 84 |
| abstract_inverted_index.monitoring | 26 |
| abstract_inverted_index.predicting | 280 |
| abstract_inverted_index.prediction | 158 |
| abstract_inverted_index.simplicity | 3 |
| abstract_inverted_index.spirometry | 30 |
| abstract_inverted_index.application | 277 |
| abstract_inverted_index.breaths/min | 219 |
| abstract_inverted_index.challenging | 35 |
| abstract_inverted_index.considering | 117 |
| abstract_inverted_index.convenience | 5 |
| abstract_inverted_index.performance | 133 |
| abstract_inverted_index.predictions | 39 |
| abstract_inverted_index.respiration | 14, 64, 156, 282 |
| abstract_inverted_index.respiratory | 145, 267 |
| abstract_inverted_index.acquisition, | 9 |
| abstract_inverted_index.breaths/min, | 174, 184, 207, 243, 252 |
| abstract_inverted_index.optimization | 101 |
| abstract_inverted_index.respectively, | 175, 185, 208, 244 |
| abstract_inverted_index.respectively. | 253 |
| abstract_inverted_index.intensive-care | 46 |
| abstract_inverted_index.simultaneously | 139 |
| abstract_inverted_index.machine-learning | 73 |
| abstract_inverted_index.low-signal-quality | 41, 87 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.67332374 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |