What Can Knowledge Bring to Machine Learning? -- A Survey of Low-shot Learning for Structured Data Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2106.06410
Supervised machine learning has several drawbacks that make it difficult to use in many situations. Drawbacks include: heavy reliance on massive training data, limited generalizability and poor expressiveness of high-level semantics. Low-shot Learning attempts to address these drawbacks. Low-shot learning allows the model to obtain good predictive power with very little or no training data, where structured knowledge plays a key role as a high-level semantic representation of human. This article will review the fundamental factors of low-shot learning technologies, with a focus on the operation of structured knowledge under different low-shot conditions. We also introduce other techniques relevant to low-shot learning. Finally, we point out the limitations of low-shot learning, the prospects and gaps of industrial applications, and future research directions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2106.06410
- https://arxiv.org/pdf/2106.06410
- OA Status
- green
- Cited By
- 3
- References
- 278
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3168122895
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3168122895Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2106.06410Digital Object Identifier
- Title
-
What Can Knowledge Bring to Machine Learning? -- A Survey of Low-shot Learning for Structured DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-06-11Full publication date if available
- Authors
-
Yang Hu, Adriane Chapman, Guihua Wen, Wendy HallList of authors in order
- Landing page
-
https://arxiv.org/abs/2106.06410Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2106.06410Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2106.06410Direct OA link when available
- Concepts
-
Computer science, Generalizability theory, Shot (pellet), Artificial intelligence, One shot, Machine learning, Semantics (computer science), Key (lock), Representation (politics), Data science, Engineering, Computer security, Organic chemistry, Law, Political science, Mechanical engineering, Politics, Chemistry, Mathematics, Statistics, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
278Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3168122895 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2106.06410 |
| ids.doi | https://doi.org/10.48550/arxiv.2106.06410 |
| ids.mag | 3168122895 |
| ids.openalex | https://openalex.org/W3168122895 |
| fwci | |
| type | preprint |
| title | What Can Knowledge Bring to Machine Learning? -- A Survey of Low-shot Learning for Structured Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.994700014591217 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9861000180244446 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7574649453163147 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C27158222 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7545567750930786 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5532422 |
| concepts[1].display_name | Generalizability theory |
| concepts[2].id | https://openalex.org/C2778344882 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6371659636497498 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q278938 |
| concepts[2].display_name | Shot (pellet) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6091132164001465 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2992734406 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5623363256454468 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q413267 |
| concepts[4].display_name | One shot |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5285968780517578 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C184337299 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4680461585521698 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1437428 |
| concepts[6].display_name | Semantics (computer science) |
| concepts[7].id | https://openalex.org/C26517878 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4462698698043823 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[7].display_name | Key (lock) |
| concepts[8].id | https://openalex.org/C2776359362 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4444253742694855 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[8].display_name | Representation (politics) |
| concepts[9].id | https://openalex.org/C2522767166 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3377705216407776 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[9].display_name | Data science |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.09586554765701294 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C38652104 |
| concepts[11].level | 1 |
| concepts[11].score | 0.07944181561470032 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[11].display_name | Computer security |
| concepts[12].id | https://openalex.org/C178790620 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[12].display_name | Organic chemistry |
| concepts[13].id | https://openalex.org/C199539241 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[13].display_name | Law |
| concepts[14].id | https://openalex.org/C17744445 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[14].display_name | Political science |
| concepts[15].id | https://openalex.org/C78519656 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[15].display_name | Mechanical engineering |
| concepts[16].id | https://openalex.org/C94625758 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[16].display_name | Politics |
| concepts[17].id | https://openalex.org/C185592680 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[17].display_name | Chemistry |
| concepts[18].id | https://openalex.org/C33923547 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[18].display_name | Mathematics |
| concepts[19].id | https://openalex.org/C105795698 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[19].display_name | Statistics |
| concepts[20].id | https://openalex.org/C199360897 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[20].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7574649453163147 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/generalizability-theory |
| keywords[1].score | 0.7545567750930786 |
| keywords[1].display_name | Generalizability theory |
| keywords[2].id | https://openalex.org/keywords/shot |
| keywords[2].score | 0.6371659636497498 |
| keywords[2].display_name | Shot (pellet) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6091132164001465 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/one-shot |
| keywords[4].score | 0.5623363256454468 |
| keywords[4].display_name | One shot |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.5285968780517578 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/semantics |
| keywords[6].score | 0.4680461585521698 |
| keywords[6].display_name | Semantics (computer science) |
| keywords[7].id | https://openalex.org/keywords/key |
| keywords[7].score | 0.4462698698043823 |
| keywords[7].display_name | Key (lock) |
| keywords[8].id | https://openalex.org/keywords/representation |
| keywords[8].score | 0.4444253742694855 |
| keywords[8].display_name | Representation (politics) |
| keywords[9].id | https://openalex.org/keywords/data-science |
| keywords[9].score | 0.3377705216407776 |
| keywords[9].display_name | Data science |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.09586554765701294 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/computer-security |
| keywords[11].score | 0.07944181561470032 |
| keywords[11].display_name | Computer security |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2106.06410 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2106.06410 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2106.06410 |
| locations[1].id | doi:10.48550/arxiv.2106.06410 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2106.06410 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5025084930 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4856-5014 |
| authorships[0].author.display_name | Yang Hu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang Hu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5013015057 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3814-2587 |
| authorships[1].author.display_name | Adriane Chapman |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Adriane Chapman |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101802990 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9709-1126 |
| authorships[2].author.display_name | Guihua Wen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guihua Wen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5000716606 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4327-7811 |
| authorships[3].author.display_name | Wendy Hall |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Wendy Hall |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2106.06410 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-06-22T00:00:00 |
| display_name | What Can Knowledge Bring to Machine Learning? -- A Survey of Low-shot Learning for Structured Data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W2497720472, https://openalex.org/W4292659306, https://openalex.org/W3044321615, https://openalex.org/W4294892107, https://openalex.org/W2806221744, https://openalex.org/W2326937258, https://openalex.org/W394267150, https://openalex.org/W2773965352, https://openalex.org/W2357748469, https://openalex.org/W2392917037 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2106.06410 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2106.06410 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2106.06410 |
| primary_location.id | pmh:oai:arXiv.org:2106.06410 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2106.06410 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2106.06410 |
| publication_date | 2021-06-11 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2406945108, https://openalex.org/W3034801186, https://openalex.org/W2577250310, https://openalex.org/W2250635077, https://openalex.org/W2313667075, https://openalex.org/W2133774033, https://openalex.org/W2795900505, https://openalex.org/W2963149098, https://openalex.org/W2912213068, https://openalex.org/W2901331771, https://openalex.org/W652269744, https://openalex.org/W1507364520, https://openalex.org/W2895416001, https://openalex.org/W2966262636, https://openalex.org/W2981967134, https://openalex.org/W3011040338, https://openalex.org/W2132096166, https://openalex.org/W2971136144, https://openalex.org/W2580909119, https://openalex.org/W2997987465, https://openalex.org/W2611632661, https://openalex.org/W2899641520, https://openalex.org/W2994972767, https://openalex.org/W3156836409, https://openalex.org/W2988772405, https://openalex.org/W2963846885, https://openalex.org/W2081580037, https://openalex.org/W2257979135, https://openalex.org/W2913969639, https://openalex.org/W2097117768, https://openalex.org/W2856961199, https://openalex.org/W2978762605, https://openalex.org/W2412589713, https://openalex.org/W3100093508, https://openalex.org/W2566266660, https://openalex.org/W3099378125, https://openalex.org/W3001807478, https://openalex.org/W3034942609, https://openalex.org/W2123399796, https://openalex.org/W2432717477, https://openalex.org/W2962723986, https://openalex.org/W2963499153, https://openalex.org/W2963775850, https://openalex.org/W2251623545, https://openalex.org/W2080133951, https://openalex.org/W2985344461, https://openalex.org/W2128532956, https://openalex.org/W2472819217, https://openalex.org/W2753709519, https://openalex.org/W3029063365, https://openalex.org/W2963078860, https://openalex.org/W3114547673, https://openalex.org/W2913015533, https://openalex.org/W2963863453, https://openalex.org/W2601450892, https://openalex.org/W2250758064, https://openalex.org/W2910453440, https://openalex.org/W2759211898, https://openalex.org/W2924476266, https://openalex.org/W2145287260, https://openalex.org/W2618285232, https://openalex.org/W3033199763, https://openalex.org/W2194321275, https://openalex.org/W2794363191, https://openalex.org/W1604644367, https://openalex.org/W2125560515, https://openalex.org/W2886219088, https://openalex.org/W3105977086, https://openalex.org/W2997591266, https://openalex.org/W2982247743, https://openalex.org/W2094728533, https://openalex.org/W3017618553, https://openalex.org/W2904415434, https://openalex.org/W2991153654, https://openalex.org/W3005970532, https://openalex.org/W2134270519, https://openalex.org/W2091118421, https://openalex.org/W3000633154, https://openalex.org/W2565989828, https://openalex.org/W2995360324, https://openalex.org/W2984354699, https://openalex.org/W3012217018, https://openalex.org/W2611035488, https://openalex.org/W3034550532, https://openalex.org/W2889587173, https://openalex.org/W2985671014, https://openalex.org/W2989193793, https://openalex.org/W2251044566, https://openalex.org/W2963101081, https://openalex.org/W2954152264, https://openalex.org/W3015001695, https://openalex.org/W3022142221, https://openalex.org/W3094815596, https://openalex.org/W2963207607, https://openalex.org/W2962722184, https://openalex.org/W2165698076, https://openalex.org/W2563852449, https://openalex.org/W2962851930, https://openalex.org/W3094134837, https://openalex.org/W2962881743, https://openalex.org/W3094624443, https://openalex.org/W2601051138, https://openalex.org/W2963680240, https://openalex.org/W2888851113, https://openalex.org/W3012584427, https://openalex.org/W2133139024, https://openalex.org/W2889577585, https://openalex.org/W2605805765, https://openalex.org/W2895520533, https://openalex.org/W2962756504, https://openalex.org/W3023332379, https://openalex.org/W2728077970, https://openalex.org/W2963290083, https://openalex.org/W2091845343, https://openalex.org/W2534209241, https://openalex.org/W3038665551, https://openalex.org/W2970716972, https://openalex.org/W2963052338, https://openalex.org/W2104419524, https://openalex.org/W2919278763, https://openalex.org/W2962849793, https://openalex.org/W2951538594, https://openalex.org/W2791535658, https://openalex.org/W2962923325, https://openalex.org/W2963360413, https://openalex.org/W2970971561, https://openalex.org/W2902723124, https://openalex.org/W2127795553, https://openalex.org/W2604763608, https://openalex.org/W3002678554, https://openalex.org/W2963420686, https://openalex.org/W3036231332, https://openalex.org/W2962716320, https://openalex.org/W2586418633, https://openalex.org/W2998532076, https://openalex.org/W2560129302, https://openalex.org/W2980117048, https://openalex.org/W2998549611, https://openalex.org/W2905471643, https://openalex.org/W2109317801, https://openalex.org/W3080986739, https://openalex.org/W2766447205, https://openalex.org/W2899867883, https://openalex.org/W2951008357, https://openalex.org/W2593116425, https://openalex.org/W2250539671, https://openalex.org/W2565684601, https://openalex.org/W2970391844, https://openalex.org/W3036762419, https://openalex.org/W3022923350, https://openalex.org/W2766453196, https://openalex.org/W2963943197, https://openalex.org/W2991813857, https://openalex.org/W2395575420, https://openalex.org/W2294414650, https://openalex.org/W2547450774, https://openalex.org/W2917462349, https://openalex.org/W2809503262, https://openalex.org/W2008857988, https://openalex.org/W3099808062, https://openalex.org/W2904623962, https://openalex.org/W2132232128, https://openalex.org/W2952851705, https://openalex.org/W2892038960, https://openalex.org/W2999088013, https://openalex.org/W2990415578, https://openalex.org/W3103802018, https://openalex.org/W2984323660, https://openalex.org/W3023854128, https://openalex.org/W2950276680, https://openalex.org/W2963580001, https://openalex.org/W2105486361, https://openalex.org/W3205420294, https://openalex.org/W2915604253, https://openalex.org/W2776920133, https://openalex.org/W2969018849, https://openalex.org/W2919510902, https://openalex.org/W2953111196, https://openalex.org/W206679605, https://openalex.org/W2783284144, https://openalex.org/W1944672, https://openalex.org/W2996857645, https://openalex.org/W2783837693, https://openalex.org/W3014460489, https://openalex.org/W2078416735, https://openalex.org/W2910589928, https://openalex.org/W3007345209, https://openalex.org/W2979300990, https://openalex.org/W1512387364, https://openalex.org/W2117539524, https://openalex.org/W2099438806, https://openalex.org/W2151554678, https://openalex.org/W2963522561, https://openalex.org/W3021239271, https://openalex.org/W2950577311, https://openalex.org/W2499696929, https://openalex.org/W2924551358, https://openalex.org/W3028024071, https://openalex.org/W2964105864, https://openalex.org/W2963866663, https://openalex.org/W2946531303, https://openalex.org/W2971071159, https://openalex.org/W2998588665, https://openalex.org/W3006604457, https://openalex.org/W2962791511, https://openalex.org/W2963726920, https://openalex.org/W2788024509, https://openalex.org/W2950220847, https://openalex.org/W1492230849, https://openalex.org/W2971167006, https://openalex.org/W2972535098, https://openalex.org/W2982316857, https://openalex.org/W2098411764, https://openalex.org/W2952826391, https://openalex.org/W2896457183, https://openalex.org/W2962886429, https://openalex.org/W2963178695, https://openalex.org/W2552383788, https://openalex.org/W2964283260, https://openalex.org/W3006421644, https://openalex.org/W2963777632, https://openalex.org/W2951535099, https://openalex.org/W2964022985, https://openalex.org/W2941985495, https://openalex.org/W2767007587, https://openalex.org/W2970597249, https://openalex.org/W2120501001, https://openalex.org/W3099910226, https://openalex.org/W2786928087, https://openalex.org/W3030437843, https://openalex.org/W2049342557, https://openalex.org/W2294130536, https://openalex.org/W2997428643, https://openalex.org/W2970578271, https://openalex.org/W2194775991, https://openalex.org/W2525127255, https://openalex.org/W2624431344, https://openalex.org/W2144578941, https://openalex.org/W2889234142, https://openalex.org/W3000538487, https://openalex.org/W3037856073, https://openalex.org/W2122410182, https://openalex.org/W2948497035, https://openalex.org/W2624871570, https://openalex.org/W2296268288, https://openalex.org/W3007695240, https://openalex.org/W2963049866, https://openalex.org/W2964071174, https://openalex.org/W2964078140, https://openalex.org/W2947298857, https://openalex.org/W2027833538, https://openalex.org/W3034730995, https://openalex.org/W2251435463, https://openalex.org/W2753160622, https://openalex.org/W3034095044, https://openalex.org/W3013944669, https://openalex.org/W2964207259, https://openalex.org/W2123024445, https://openalex.org/W2766196653, https://openalex.org/W3034572110, https://openalex.org/W2989619960, https://openalex.org/W2107598941, https://openalex.org/W2139338362, https://openalex.org/W2342408547, https://openalex.org/W2141350700, https://openalex.org/W2135689168, https://openalex.org/W2120279123, https://openalex.org/W2949759300, https://openalex.org/W2398118205, https://openalex.org/W2951281034, https://openalex.org/W2955116803, https://openalex.org/W3091905774, https://openalex.org/W2153959628, https://openalex.org/W2606176153, https://openalex.org/W2943605315, https://openalex.org/W2963486920, https://openalex.org/W1545260415, https://openalex.org/W3022845607 |
| referenced_works_count | 278 |
| abstract_inverted_index.a | 59, 63, 81 |
| abstract_inverted_index.We | 93 |
| abstract_inverted_index.as | 62 |
| abstract_inverted_index.in | 12 |
| abstract_inverted_index.it | 8 |
| abstract_inverted_index.no | 52 |
| abstract_inverted_index.of | 28, 67, 76, 86, 108, 115 |
| abstract_inverted_index.on | 19, 83 |
| abstract_inverted_index.or | 51 |
| abstract_inverted_index.to | 10, 34, 43, 99 |
| abstract_inverted_index.we | 103 |
| abstract_inverted_index.and | 25, 113, 118 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.key | 60 |
| abstract_inverted_index.out | 105 |
| abstract_inverted_index.the | 41, 73, 84, 106, 111 |
| abstract_inverted_index.use | 11 |
| abstract_inverted_index.This | 69 |
| abstract_inverted_index.also | 94 |
| abstract_inverted_index.gaps | 114 |
| abstract_inverted_index.good | 45 |
| abstract_inverted_index.make | 7 |
| abstract_inverted_index.many | 13 |
| abstract_inverted_index.poor | 26 |
| abstract_inverted_index.role | 61 |
| abstract_inverted_index.that | 6 |
| abstract_inverted_index.very | 49 |
| abstract_inverted_index.will | 71 |
| abstract_inverted_index.with | 48, 80 |
| abstract_inverted_index.data, | 22, 54 |
| abstract_inverted_index.focus | 82 |
| abstract_inverted_index.heavy | 17 |
| abstract_inverted_index.model | 42 |
| abstract_inverted_index.other | 96 |
| abstract_inverted_index.plays | 58 |
| abstract_inverted_index.point | 104 |
| abstract_inverted_index.power | 47 |
| abstract_inverted_index.these | 36 |
| abstract_inverted_index.under | 89 |
| abstract_inverted_index.where | 55 |
| abstract_inverted_index.allows | 40 |
| abstract_inverted_index.future | 119 |
| abstract_inverted_index.human. | 68 |
| abstract_inverted_index.little | 50 |
| abstract_inverted_index.obtain | 44 |
| abstract_inverted_index.review | 72 |
| abstract_inverted_index.address | 35 |
| abstract_inverted_index.article | 70 |
| abstract_inverted_index.factors | 75 |
| abstract_inverted_index.limited | 23 |
| abstract_inverted_index.machine | 1 |
| abstract_inverted_index.massive | 20 |
| abstract_inverted_index.several | 4 |
| abstract_inverted_index.Finally, | 102 |
| abstract_inverted_index.Learning | 32 |
| abstract_inverted_index.Low-shot | 31, 38 |
| abstract_inverted_index.attempts | 33 |
| abstract_inverted_index.include: | 16 |
| abstract_inverted_index.learning | 2, 39, 78 |
| abstract_inverted_index.low-shot | 77, 91, 100, 109 |
| abstract_inverted_index.relevant | 98 |
| abstract_inverted_index.reliance | 18 |
| abstract_inverted_index.research | 120 |
| abstract_inverted_index.semantic | 65 |
| abstract_inverted_index.training | 21, 53 |
| abstract_inverted_index.Drawbacks | 15 |
| abstract_inverted_index.different | 90 |
| abstract_inverted_index.difficult | 9 |
| abstract_inverted_index.drawbacks | 5 |
| abstract_inverted_index.introduce | 95 |
| abstract_inverted_index.knowledge | 57, 88 |
| abstract_inverted_index.learning, | 110 |
| abstract_inverted_index.learning. | 101 |
| abstract_inverted_index.operation | 85 |
| abstract_inverted_index.prospects | 112 |
| abstract_inverted_index.Supervised | 0 |
| abstract_inverted_index.drawbacks. | 37 |
| abstract_inverted_index.high-level | 29, 64 |
| abstract_inverted_index.industrial | 116 |
| abstract_inverted_index.predictive | 46 |
| abstract_inverted_index.semantics. | 30 |
| abstract_inverted_index.structured | 56, 87 |
| abstract_inverted_index.techniques | 97 |
| abstract_inverted_index.conditions. | 92 |
| abstract_inverted_index.directions. | 121 |
| abstract_inverted_index.fundamental | 74 |
| abstract_inverted_index.limitations | 107 |
| abstract_inverted_index.situations. | 14 |
| abstract_inverted_index.applications, | 117 |
| abstract_inverted_index.technologies, | 79 |
| abstract_inverted_index.expressiveness | 27 |
| abstract_inverted_index.representation | 66 |
| abstract_inverted_index.generalizability | 24 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile |