What can Transactional Data reveal about relative prevalence of Menstrual Pain and Period Poverty? Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.31234/osf.io/v5p3w_v1
Background: 91% of those who menstruate reported to experiencing associated pain. Despite the ubiquity of this phenomenon, the prevalence, extent and socio-demographic variation of menstrual pain remains understudied at national levels - whether due to a shortage of applicable data at national scales or other factors.Method: We assess the extent and variation of menstrual pain at a national level. To achieve this, we develop a novel proxy measure for menstrual pain, utilising behavioural data extracted from mass supermarket shopping logs. Baskets where pain and menstrual items co-occur are investigated, and normalized against baskets in which pain or menstrual items occur in isolation. Propensity of menstrual pain purchases are aggregated temporally and geographically across England, prior to linkage with socio-demographic indicators regionally. Results: Findings indicate high prevalence of menstrual pain across England, with 26.7% of customers I our dataset buying pain relief together with menstrual products. People who menstruate are observed to be four times more likely to purchase pain relief with menstrual items than without. Average regional income provides the strongest predictor of menstrual pain co-purchases, with lower income regions exhibiting a 32% lower menstrual-pain purchase than higher income regions.Discussion: The robust presence of a consistent 28-day cycle in menstrual-pain purchases provides empirical evidence for the use of behavioural proxies for menstrual pain alongside traditional measures. Significant regional differences observed in the prevalence of menstrual-pain transactions across England brings into light existing disparities. Future research into improved understanding of sociodemographic factors associated with menstrual pain could inform strategies to predict and prevent menstrual pain and its adverse impacts.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.31234/osf.io/v5p3w_v1
- https://osf.io/v5p3w_v1/download
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408851519
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408851519Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31234/osf.io/v5p3w_v1Digital Object Identifier
- Title
-
What can Transactional Data reveal about relative prevalence of Menstrual Pain and Period Poverty?Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-26Full publication date if available
- Authors
-
Anya Skatova, Torty Sivill, Vanja Ljevar, James GouldingList of authors in order
- Landing page
-
https://doi.org/10.31234/osf.io/v5p3w_v1Publisher landing page
- PDF URL
-
https://osf.io/v5p3w_v1/downloadDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://osf.io/v5p3w_v1/downloadDirect OA link when available
- Concepts
-
Period (music), Poverty, Menstrual period, Transactional leadership, Medicine, Demography, Psychology, Economics, Physiology, Social psychology, Economic growth, Sociology, Acoustics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408851519 |
|---|---|
| doi | https://doi.org/10.31234/osf.io/v5p3w_v1 |
| ids.doi | https://doi.org/10.31234/osf.io/v5p3w_v1 |
| ids.openalex | https://openalex.org/W4408851519 |
| fwci | |
| type | preprint |
| title | What can Transactional Data reveal about relative prevalence of Menstrual Pain and Period Poverty? |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13989 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.718500018119812 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3318 |
| topics[0].subfield.display_name | Gender Studies |
| topics[0].display_name | Labour Market and Migration |
| topics[1].id | https://openalex.org/T10600 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.6952000260353088 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2739 |
| topics[1].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[1].display_name | Reproductive Health and Contraception |
| topics[2].id | https://openalex.org/T13782 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.6161999702453613 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3203 |
| topics[2].subfield.display_name | Clinical Psychology |
| topics[2].display_name | Transactional Analysis in Psychotherapy |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781291010 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7292899489402771 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q178580 |
| concepts[0].display_name | Period (music) |
| concepts[1].id | https://openalex.org/C189326681 |
| concepts[1].level | 2 |
| concepts[1].score | 0.599511444568634 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10294 |
| concepts[1].display_name | Poverty |
| concepts[2].id | https://openalex.org/C2909635826 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4717950224876404 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q83864 |
| concepts[2].display_name | Menstrual period |
| concepts[3].id | https://openalex.org/C68489960 |
| concepts[3].level | 2 |
| concepts[3].score | 0.41352134943008423 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2370659 |
| concepts[3].display_name | Transactional leadership |
| concepts[4].id | https://openalex.org/C71924100 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3947125971317291 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[4].display_name | Medicine |
| concepts[5].id | https://openalex.org/C149923435 |
| concepts[5].level | 1 |
| concepts[5].score | 0.37845662236213684 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[5].display_name | Demography |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2866659164428711 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C162324750 |
| concepts[7].level | 0 |
| concepts[7].score | 0.20677953958511353 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[7].display_name | Economics |
| concepts[8].id | https://openalex.org/C42407357 |
| concepts[8].level | 1 |
| concepts[8].score | 0.09771999716758728 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q521 |
| concepts[8].display_name | Physiology |
| concepts[9].id | https://openalex.org/C77805123 |
| concepts[9].level | 1 |
| concepts[9].score | 0.09751072525978088 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[9].display_name | Social psychology |
| concepts[10].id | https://openalex.org/C50522688 |
| concepts[10].level | 1 |
| concepts[10].score | 0.06867715716362 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[10].display_name | Economic growth |
| concepts[11].id | https://openalex.org/C144024400 |
| concepts[11].level | 0 |
| concepts[11].score | 0.05796092748641968 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[11].display_name | Sociology |
| concepts[12].id | https://openalex.org/C24890656 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[12].display_name | Acoustics |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/period |
| keywords[0].score | 0.7292899489402771 |
| keywords[0].display_name | Period (music) |
| keywords[1].id | https://openalex.org/keywords/poverty |
| keywords[1].score | 0.599511444568634 |
| keywords[1].display_name | Poverty |
| keywords[2].id | https://openalex.org/keywords/menstrual-period |
| keywords[2].score | 0.4717950224876404 |
| keywords[2].display_name | Menstrual period |
| keywords[3].id | https://openalex.org/keywords/transactional-leadership |
| keywords[3].score | 0.41352134943008423 |
| keywords[3].display_name | Transactional leadership |
| keywords[4].id | https://openalex.org/keywords/medicine |
| keywords[4].score | 0.3947125971317291 |
| keywords[4].display_name | Medicine |
| keywords[5].id | https://openalex.org/keywords/demography |
| keywords[5].score | 0.37845662236213684 |
| keywords[5].display_name | Demography |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.2866659164428711 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/economics |
| keywords[7].score | 0.20677953958511353 |
| keywords[7].display_name | Economics |
| keywords[8].id | https://openalex.org/keywords/physiology |
| keywords[8].score | 0.09771999716758728 |
| keywords[8].display_name | Physiology |
| keywords[9].id | https://openalex.org/keywords/social-psychology |
| keywords[9].score | 0.09751072525978088 |
| keywords[9].display_name | Social psychology |
| keywords[10].id | https://openalex.org/keywords/economic-growth |
| keywords[10].score | 0.06867715716362 |
| keywords[10].display_name | Economic growth |
| keywords[11].id | https://openalex.org/keywords/sociology |
| keywords[11].score | 0.05796092748641968 |
| keywords[11].display_name | Sociology |
| language | en |
| locations[0].id | doi:10.31234/osf.io/v5p3w_v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | public-domain |
| locations[0].pdf_url | https://osf.io/v5p3w_v1/download |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/public-domain |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.31234/osf.io/v5p3w_v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5073459847 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0300-4990 |
| authorships[0].author.display_name | Anya Skatova |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Anya Skatova |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5039681093 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Torty Sivill |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Torty Sivill |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5013334718 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1434-9663 |
| authorships[2].author.display_name | Vanja Ljevar |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Vanja Ljevar |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5026654187 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8892-6398 |
| authorships[3].author.display_name | James Goulding |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | James Goulding |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://osf.io/v5p3w_v1/download |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-03-26T00:00:00 |
| display_name | What can Transactional Data reveal about relative prevalence of Menstrual Pain and Period Poverty? |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13989 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.718500018119812 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3318 |
| primary_topic.subfield.display_name | Gender Studies |
| primary_topic.display_name | Labour Market and Migration |
| related_works | https://openalex.org/W2106092715, https://openalex.org/W616632114, https://openalex.org/W2379461907, https://openalex.org/W2590211375, https://openalex.org/W331143443, https://openalex.org/W4214505880, https://openalex.org/W2348994942, https://openalex.org/W93581272, https://openalex.org/W4285308928, https://openalex.org/W2378710205 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.31234/osf.io/v5p3w_v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | public-domain |
| best_oa_location.pdf_url | https://osf.io/v5p3w_v1/download |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/public-domain |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.31234/osf.io/v5p3w_v1 |
| primary_location.id | doi:10.31234/osf.io/v5p3w_v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | public-domain |
| primary_location.pdf_url | https://osf.io/v5p3w_v1/download |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/public-domain |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.31234/osf.io/v5p3w_v1 |
| publication_date | 2025-03-26 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 31 |
| abstract_inverted_index.I | 135 |
| abstract_inverted_index.a | 35, 56, 64, 181, 194 |
| abstract_inverted_index.To | 59 |
| abstract_inverted_index.We | 46 |
| abstract_inverted_index.at | 28, 40, 55 |
| abstract_inverted_index.be | 151 |
| abstract_inverted_index.in | 93, 100, 198, 220 |
| abstract_inverted_index.of | 2, 14, 23, 37, 52, 103, 126, 133, 172, 193, 207, 223, 238 |
| abstract_inverted_index.or | 43, 96 |
| abstract_inverted_index.to | 7, 34, 115, 150, 156, 248 |
| abstract_inverted_index.we | 62 |
| abstract_inverted_index.32% | 182 |
| abstract_inverted_index.91% | 1 |
| abstract_inverted_index.The | 190 |
| abstract_inverted_index.and | 20, 50, 83, 89, 110, 250, 254 |
| abstract_inverted_index.are | 87, 107, 148 |
| abstract_inverted_index.due | 33 |
| abstract_inverted_index.for | 68, 204, 210 |
| abstract_inverted_index.its | 255 |
| abstract_inverted_index.our | 136 |
| abstract_inverted_index.the | 12, 17, 48, 169, 205, 221 |
| abstract_inverted_index.use | 206 |
| abstract_inverted_index.who | 4, 146 |
| abstract_inverted_index.data | 39, 73 |
| abstract_inverted_index.four | 152 |
| abstract_inverted_index.from | 75 |
| abstract_inverted_index.high | 124 |
| abstract_inverted_index.into | 229, 235 |
| abstract_inverted_index.mass | 76 |
| abstract_inverted_index.more | 154 |
| abstract_inverted_index.pain | 25, 54, 82, 95, 105, 128, 139, 158, 174, 212, 244, 253 |
| abstract_inverted_index.than | 163, 186 |
| abstract_inverted_index.this | 15 |
| abstract_inverted_index.with | 117, 131, 142, 160, 176, 242 |
| abstract_inverted_index.26.7% | 132 |
| abstract_inverted_index.could | 245 |
| abstract_inverted_index.cycle | 197 |
| abstract_inverted_index.items | 85, 98, 162 |
| abstract_inverted_index.light | 230 |
| abstract_inverted_index.logs. | 79 |
| abstract_inverted_index.lower | 177, 183 |
| abstract_inverted_index.novel | 65 |
| abstract_inverted_index.occur | 99 |
| abstract_inverted_index.other | 44 |
| abstract_inverted_index.pain, | 70 |
| abstract_inverted_index.pain. | 10 |
| abstract_inverted_index.prior | 114 |
| abstract_inverted_index.proxy | 66 |
| abstract_inverted_index.this, | 61 |
| abstract_inverted_index.those | 3 |
| abstract_inverted_index.times | 153 |
| abstract_inverted_index.where | 81 |
| abstract_inverted_index.which | 94 |
| abstract_inverted_index.28-day | 196 |
| abstract_inverted_index.Future | 233 |
| abstract_inverted_index.People | 145 |
| abstract_inverted_index.across | 112, 129, 226 |
| abstract_inverted_index.assess | 47 |
| abstract_inverted_index.brings | 228 |
| abstract_inverted_index.buying | 138 |
| abstract_inverted_index.extent | 19, 49 |
| abstract_inverted_index.higher | 187 |
| abstract_inverted_index.income | 167, 178, 188 |
| abstract_inverted_index.inform | 246 |
| abstract_inverted_index.level. | 58 |
| abstract_inverted_index.levels | 30 |
| abstract_inverted_index.likely | 155 |
| abstract_inverted_index.relief | 140, 159 |
| abstract_inverted_index.robust | 191 |
| abstract_inverted_index.scales | 42 |
| abstract_inverted_index.Average | 165 |
| abstract_inverted_index.Baskets | 80 |
| abstract_inverted_index.Despite | 11 |
| abstract_inverted_index.England | 227 |
| abstract_inverted_index.achieve | 60 |
| abstract_inverted_index.adverse | 256 |
| abstract_inverted_index.against | 91 |
| abstract_inverted_index.baskets | 92 |
| abstract_inverted_index.dataset | 137 |
| abstract_inverted_index.develop | 63 |
| abstract_inverted_index.factors | 240 |
| abstract_inverted_index.linkage | 116 |
| abstract_inverted_index.measure | 67 |
| abstract_inverted_index.predict | 249 |
| abstract_inverted_index.prevent | 251 |
| abstract_inverted_index.proxies | 209 |
| abstract_inverted_index.regions | 179 |
| abstract_inverted_index.remains | 26 |
| abstract_inverted_index.whether | 32 |
| abstract_inverted_index.England, | 113, 130 |
| abstract_inverted_index.Findings | 122 |
| abstract_inverted_index.Results: | 121 |
| abstract_inverted_index.co-occur | 86 |
| abstract_inverted_index.evidence | 203 |
| abstract_inverted_index.existing | 231 |
| abstract_inverted_index.impacts. | 257 |
| abstract_inverted_index.improved | 236 |
| abstract_inverted_index.indicate | 123 |
| abstract_inverted_index.national | 29, 41, 57 |
| abstract_inverted_index.observed | 149, 219 |
| abstract_inverted_index.presence | 192 |
| abstract_inverted_index.provides | 168, 201 |
| abstract_inverted_index.purchase | 157, 185 |
| abstract_inverted_index.regional | 166, 217 |
| abstract_inverted_index.reported | 6 |
| abstract_inverted_index.research | 234 |
| abstract_inverted_index.shopping | 78 |
| abstract_inverted_index.shortage | 36 |
| abstract_inverted_index.together | 141 |
| abstract_inverted_index.ubiquity | 13 |
| abstract_inverted_index.without. | 164 |
| abstract_inverted_index.alongside | 213 |
| abstract_inverted_index.customers | 134 |
| abstract_inverted_index.empirical | 202 |
| abstract_inverted_index.extracted | 74 |
| abstract_inverted_index.measures. | 215 |
| abstract_inverted_index.menstrual | 24, 53, 69, 84, 97, 104, 127, 143, 161, 173, 211, 243, 252 |
| abstract_inverted_index.predictor | 171 |
| abstract_inverted_index.products. | 144 |
| abstract_inverted_index.purchases | 106, 200 |
| abstract_inverted_index.strongest | 170 |
| abstract_inverted_index.utilising | 71 |
| abstract_inverted_index.variation | 22, 51 |
| abstract_inverted_index.Propensity | 102 |
| abstract_inverted_index.aggregated | 108 |
| abstract_inverted_index.applicable | 38 |
| abstract_inverted_index.associated | 9, 241 |
| abstract_inverted_index.consistent | 195 |
| abstract_inverted_index.exhibiting | 180 |
| abstract_inverted_index.indicators | 119 |
| abstract_inverted_index.isolation. | 101 |
| abstract_inverted_index.menstruate | 5, 147 |
| abstract_inverted_index.normalized | 90 |
| abstract_inverted_index.prevalence | 125, 222 |
| abstract_inverted_index.strategies | 247 |
| abstract_inverted_index.temporally | 109 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.Significant | 216 |
| abstract_inverted_index.behavioural | 72, 208 |
| abstract_inverted_index.differences | 218 |
| abstract_inverted_index.phenomenon, | 16 |
| abstract_inverted_index.prevalence, | 18 |
| abstract_inverted_index.regionally. | 120 |
| abstract_inverted_index.supermarket | 77 |
| abstract_inverted_index.traditional | 214 |
| abstract_inverted_index.disparities. | 232 |
| abstract_inverted_index.experiencing | 8 |
| abstract_inverted_index.transactions | 225 |
| abstract_inverted_index.understudied | 27 |
| abstract_inverted_index.co-purchases, | 175 |
| abstract_inverted_index.investigated, | 88 |
| abstract_inverted_index.understanding | 237 |
| abstract_inverted_index.geographically | 111 |
| abstract_inverted_index.menstrual-pain | 184, 199, 224 |
| abstract_inverted_index.factors.Method: | 45 |
| abstract_inverted_index.sociodemographic | 239 |
| abstract_inverted_index.socio-demographic | 21, 118 |
| abstract_inverted_index.regions.Discussion: | 189 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.12702328 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |