What does fault tolerant Deep Learning need from MPI? Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1709.03316
Deep Learning (DL) algorithms have become the de facto Machine Learning (ML) algorithm for large scale data analysis. DL algorithms are computationally expensive - even distributed DL implementations which use MPI require days of training (model learning) time on commonly studied datasets. Long running DL applications become susceptible to faults - requiring development of a fault tolerant system infrastructure, in addition to fault tolerant DL algorithms. This raises an important question: What is needed from MPI for de- signing fault tolerant DL implementations? In this paper, we address this problem for permanent faults. We motivate the need for a fault tolerant MPI specification by an in-depth consideration of recent innovations in DL algorithms and their properties, which drive the need for specific fault tolerance features. We present an in-depth discussion on the suitability of different parallelism types (model, data and hybrid); a need (or lack thereof) for check-pointing of any critical data structures; and most importantly, consideration for several fault tolerance proposals (user-level fault mitigation (ULFM), Reinit) in MPI and their applicability to fault tolerant DL implementations. We leverage a distributed memory implementation of Caffe, currently available under the Machine Learning Toolkit for Extreme Scale (MaTEx). We implement our approaches by ex- tending MaTEx-Caffe for using ULFM-based implementation. Our evaluation using the ImageNet dataset and AlexNet, and GoogLeNet neural network topologies demonstrates the effectiveness of the proposed fault tolerant DL implementation using OpenMPI based ULFM.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1709.03316
- https://arxiv.org/pdf/1709.03316
- OA Status
- green
- Cited By
- 1
- References
- 6
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2952319695
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2952319695Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1709.03316Digital Object Identifier
- Title
-
What does fault tolerant Deep Learning need from MPI?Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-09-11Full publication date if available
- Authors
-
Vinay Amatya, Abhinav Vishnu, Charles Siegel, Jeff DailyList of authors in order
- Landing page
-
https://arxiv.org/abs/1709.03316Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1709.03316Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1709.03316Direct OA link when available
- Concepts
-
Computer science, Implementation, Fault tolerance, Leverage (statistics), Artificial intelligence, Machine learning, Artificial neural network, Deep learning, Distributed computing, Software engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2020: 1Per-year citation counts (last 5 years)
- References (count)
-
6Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2952319695 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1709.03316 |
| ids.doi | https://doi.org/10.48550/arxiv.1709.03316 |
| ids.mag | 2952319695 |
| ids.openalex | https://openalex.org/W2952319695 |
| fwci | |
| type | preprint |
| title | What does fault tolerant Deep Learning need from MPI? |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9939000010490417 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T11005 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9854000210762024 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Radiation Effects in Electronics |
| topics[2].id | https://openalex.org/T11689 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9805999994277954 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Adversarial Robustness in Machine Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7959929704666138 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C26713055 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7892647981643677 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q245962 |
| concepts[1].display_name | Implementation |
| concepts[2].id | https://openalex.org/C63540848 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7225723266601562 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3140932 |
| concepts[2].display_name | Fault tolerance |
| concepts[3].id | https://openalex.org/C153083717 |
| concepts[3].level | 2 |
| concepts[3].score | 0.594443678855896 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[3].display_name | Leverage (statistics) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5776086449623108 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5159559845924377 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5133597254753113 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5123885273933411 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C120314980 |
| concepts[8].level | 1 |
| concepts[8].score | 0.5019657611846924 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[8].display_name | Distributed computing |
| concepts[9].id | https://openalex.org/C115903868 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1483512818813324 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q80993 |
| concepts[9].display_name | Software engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7959929704666138 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/implementation |
| keywords[1].score | 0.7892647981643677 |
| keywords[1].display_name | Implementation |
| keywords[2].id | https://openalex.org/keywords/fault-tolerance |
| keywords[2].score | 0.7225723266601562 |
| keywords[2].display_name | Fault tolerance |
| keywords[3].id | https://openalex.org/keywords/leverage |
| keywords[3].score | 0.594443678855896 |
| keywords[3].display_name | Leverage (statistics) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5776086449623108 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.5159559845924377 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.5133597254753113 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.5123885273933411 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/distributed-computing |
| keywords[8].score | 0.5019657611846924 |
| keywords[8].display_name | Distributed computing |
| keywords[9].id | https://openalex.org/keywords/software-engineering |
| keywords[9].score | 0.1483512818813324 |
| keywords[9].display_name | Software engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1709.03316 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1709.03316 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1709.03316 |
| locations[1].id | mag:2952319695 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | https://arxiv.org/pdf/1709.03316 |
| locations[2].id | doi:10.48550/arxiv.1709.03316 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.1709.03316 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5019702659 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Vinay Amatya |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I142606810 |
| authorships[0].affiliations[0].raw_affiliation_string | Pacific Northwest National Laboratories |
| authorships[0].institutions[0].id | https://openalex.org/I142606810 |
| authorships[0].institutions[0].ror | https://ror.org/05h992307 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1325736334, https://openalex.org/I1330989302, https://openalex.org/I142606810, https://openalex.org/I39565521 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Pacific Northwest National Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vinay Amatya |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Pacific Northwest National Laboratories |
| authorships[1].author.id | https://openalex.org/A5009322871 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0593-4780 |
| authorships[1].author.display_name | Abhinav Vishnu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I142606810 |
| authorships[1].affiliations[0].raw_affiliation_string | Pacific Northwest National Laboratories |
| authorships[1].institutions[0].id | https://openalex.org/I142606810 |
| authorships[1].institutions[0].ror | https://ror.org/05h992307 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1325736334, https://openalex.org/I1330989302, https://openalex.org/I142606810, https://openalex.org/I39565521 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Pacific Northwest National Laboratory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Abhinav Vishnu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Pacific Northwest National Laboratories |
| authorships[2].author.id | https://openalex.org/A5058970517 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6644-5764 |
| authorships[2].author.display_name | Charles Siegel |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I142606810 |
| authorships[2].affiliations[0].raw_affiliation_string | Pacific Northwest National Laboratories |
| authorships[2].institutions[0].id | https://openalex.org/I142606810 |
| authorships[2].institutions[0].ror | https://ror.org/05h992307 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1325736334, https://openalex.org/I1330989302, https://openalex.org/I142606810, https://openalex.org/I39565521 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Pacific Northwest National Laboratory |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Charles Siegel |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Pacific Northwest National Laboratories |
| authorships[3].author.id | https://openalex.org/A5072118143 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6212-5173 |
| authorships[3].author.display_name | Jeff Daily |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I142606810 |
| authorships[3].affiliations[0].raw_affiliation_string | Pacific Northwest National Laboratories |
| authorships[3].institutions[0].id | https://openalex.org/I142606810 |
| authorships[3].institutions[0].ror | https://ror.org/05h992307 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1325736334, https://openalex.org/I1330989302, https://openalex.org/I142606810, https://openalex.org/I39565521 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Pacific Northwest National Laboratory |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jeff Daily |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Pacific Northwest National Laboratories |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1709.03316 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | What does fault tolerant Deep Learning need from MPI? |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9939000010490417 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2745999522, https://openalex.org/W2334315707, https://openalex.org/W637950263, https://openalex.org/W180528667, https://openalex.org/W2350610608, https://openalex.org/W2110029184, https://openalex.org/W163470805, https://openalex.org/W2109417646, https://openalex.org/W2538973129, https://openalex.org/W2119410265, https://openalex.org/W2138059262, https://openalex.org/W2129828158, https://openalex.org/W1504391205, https://openalex.org/W2794591735, https://openalex.org/W2150398857, https://openalex.org/W2041103479, https://openalex.org/W2921770099, https://openalex.org/W2126806675, https://openalex.org/W2532021380, https://openalex.org/W2832670491 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2020 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:1709.03316 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1709.03316 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1709.03316 |
| primary_location.id | pmh:oai:arXiv.org:1709.03316 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1709.03316 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1709.03316 |
| publication_date | 2017-09-11 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2163605009, https://openalex.org/W2582187633, https://openalex.org/W1548328233, https://openalex.org/W1606347560, https://openalex.org/W2345707736, https://openalex.org/W2950094539 |
| referenced_works_count | 6 |
| abstract_inverted_index.- | 23, 50 |
| abstract_inverted_index.a | 54, 98, 141, 179 |
| abstract_inverted_index.DL | 18, 26, 44, 64, 81, 111, 175, 229 |
| abstract_inverted_index.In | 83 |
| abstract_inverted_index.We | 93, 125, 177, 196 |
| abstract_inverted_index.an | 68, 104, 127 |
| abstract_inverted_index.by | 103, 200 |
| abstract_inverted_index.de | 7 |
| abstract_inverted_index.in | 59, 110, 167 |
| abstract_inverted_index.is | 72 |
| abstract_inverted_index.of | 33, 53, 107, 133, 148, 183, 224 |
| abstract_inverted_index.on | 38, 130 |
| abstract_inverted_index.to | 48, 61, 172 |
| abstract_inverted_index.we | 86 |
| abstract_inverted_index.(or | 143 |
| abstract_inverted_index.MPI | 30, 75, 101, 168 |
| abstract_inverted_index.Our | 208 |
| abstract_inverted_index.and | 113, 139, 153, 169, 214, 216 |
| abstract_inverted_index.any | 149 |
| abstract_inverted_index.are | 20 |
| abstract_inverted_index.de- | 77 |
| abstract_inverted_index.ex- | 201 |
| abstract_inverted_index.for | 13, 76, 90, 97, 120, 146, 157, 192, 204 |
| abstract_inverted_index.our | 198 |
| abstract_inverted_index.the | 6, 95, 118, 131, 188, 211, 222, 225 |
| abstract_inverted_index.use | 29 |
| abstract_inverted_index.(DL) | 2 |
| abstract_inverted_index.(ML) | 11 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.Long | 42 |
| abstract_inverted_index.This | 66 |
| abstract_inverted_index.What | 71 |
| abstract_inverted_index.data | 16, 138, 151 |
| abstract_inverted_index.days | 32 |
| abstract_inverted_index.even | 24 |
| abstract_inverted_index.from | 74 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.lack | 144 |
| abstract_inverted_index.most | 154 |
| abstract_inverted_index.need | 96, 119, 142 |
| abstract_inverted_index.this | 84, 88 |
| abstract_inverted_index.time | 37 |
| abstract_inverted_index.Scale | 194 |
| abstract_inverted_index.ULFM. | 234 |
| abstract_inverted_index.based | 233 |
| abstract_inverted_index.drive | 117 |
| abstract_inverted_index.facto | 8 |
| abstract_inverted_index.fault | 55, 62, 79, 99, 122, 159, 163, 173, 227 |
| abstract_inverted_index.large | 14 |
| abstract_inverted_index.scale | 15 |
| abstract_inverted_index.their | 114, 170 |
| abstract_inverted_index.types | 136 |
| abstract_inverted_index.under | 187 |
| abstract_inverted_index.using | 205, 210, 231 |
| abstract_inverted_index.which | 28, 116 |
| abstract_inverted_index.(model | 35 |
| abstract_inverted_index.Caffe, | 184 |
| abstract_inverted_index.become | 5, 46 |
| abstract_inverted_index.faults | 49 |
| abstract_inverted_index.memory | 181 |
| abstract_inverted_index.needed | 73 |
| abstract_inverted_index.neural | 218 |
| abstract_inverted_index.paper, | 85 |
| abstract_inverted_index.raises | 67 |
| abstract_inverted_index.recent | 108 |
| abstract_inverted_index.system | 57 |
| abstract_inverted_index.(ULFM), | 165 |
| abstract_inverted_index.(model, | 137 |
| abstract_inverted_index.Extreme | 193 |
| abstract_inverted_index.Machine | 9, 189 |
| abstract_inverted_index.OpenMPI | 232 |
| abstract_inverted_index.Reinit) | 166 |
| abstract_inverted_index.Toolkit | 191 |
| abstract_inverted_index.address | 87 |
| abstract_inverted_index.dataset | 213 |
| abstract_inverted_index.faults. | 92 |
| abstract_inverted_index.network | 219 |
| abstract_inverted_index.present | 126 |
| abstract_inverted_index.problem | 89 |
| abstract_inverted_index.require | 31 |
| abstract_inverted_index.running | 43 |
| abstract_inverted_index.several | 158 |
| abstract_inverted_index.signing | 78 |
| abstract_inverted_index.studied | 40 |
| abstract_inverted_index.tending | 202 |
| abstract_inverted_index.(MaTEx). | 195 |
| abstract_inverted_index.AlexNet, | 215 |
| abstract_inverted_index.ImageNet | 212 |
| abstract_inverted_index.Learning | 1, 10, 190 |
| abstract_inverted_index.addition | 60 |
| abstract_inverted_index.commonly | 39 |
| abstract_inverted_index.critical | 150 |
| abstract_inverted_index.hybrid); | 140 |
| abstract_inverted_index.in-depth | 105, 128 |
| abstract_inverted_index.leverage | 178 |
| abstract_inverted_index.motivate | 94 |
| abstract_inverted_index.proposed | 226 |
| abstract_inverted_index.specific | 121 |
| abstract_inverted_index.thereof) | 145 |
| abstract_inverted_index.tolerant | 56, 63, 80, 100, 174, 228 |
| abstract_inverted_index.training | 34 |
| abstract_inverted_index.GoogLeNet | 217 |
| abstract_inverted_index.algorithm | 12 |
| abstract_inverted_index.analysis. | 17 |
| abstract_inverted_index.available | 186 |
| abstract_inverted_index.currently | 185 |
| abstract_inverted_index.datasets. | 41 |
| abstract_inverted_index.different | 134 |
| abstract_inverted_index.expensive | 22 |
| abstract_inverted_index.features. | 124 |
| abstract_inverted_index.implement | 197 |
| abstract_inverted_index.important | 69 |
| abstract_inverted_index.learning) | 36 |
| abstract_inverted_index.permanent | 91 |
| abstract_inverted_index.proposals | 161 |
| abstract_inverted_index.question: | 70 |
| abstract_inverted_index.requiring | 51 |
| abstract_inverted_index.tolerance | 123, 160 |
| abstract_inverted_index.ULFM-based | 206 |
| abstract_inverted_index.algorithms | 3, 19, 112 |
| abstract_inverted_index.approaches | 199 |
| abstract_inverted_index.discussion | 129 |
| abstract_inverted_index.evaluation | 209 |
| abstract_inverted_index.mitigation | 164 |
| abstract_inverted_index.topologies | 220 |
| abstract_inverted_index.(user-level | 162 |
| abstract_inverted_index.MaTEx-Caffe | 203 |
| abstract_inverted_index.algorithms. | 65 |
| abstract_inverted_index.development | 52 |
| abstract_inverted_index.distributed | 25, 180 |
| abstract_inverted_index.innovations | 109 |
| abstract_inverted_index.parallelism | 135 |
| abstract_inverted_index.properties, | 115 |
| abstract_inverted_index.structures; | 152 |
| abstract_inverted_index.suitability | 132 |
| abstract_inverted_index.susceptible | 47 |
| abstract_inverted_index.applications | 45 |
| abstract_inverted_index.demonstrates | 221 |
| abstract_inverted_index.importantly, | 155 |
| abstract_inverted_index.applicability | 171 |
| abstract_inverted_index.consideration | 106, 156 |
| abstract_inverted_index.effectiveness | 223 |
| abstract_inverted_index.specification | 102 |
| abstract_inverted_index.check-pointing | 147 |
| abstract_inverted_index.implementation | 182, 230 |
| abstract_inverted_index.computationally | 21 |
| abstract_inverted_index.implementation. | 207 |
| abstract_inverted_index.implementations | 27 |
| abstract_inverted_index.infrastructure, | 58 |
| abstract_inverted_index.implementations. | 176 |
| abstract_inverted_index.implementations? | 82 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |