When & How to Transfer with Transfer Learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2211.04347
In deep learning, transfer learning (TL) has become the de facto approach when dealing with image related tasks. Visual features learnt for one task have been shown to be reusable for other tasks, improving performance significantly. By reusing deep representations, TL enables the use of deep models in domains with limited data availability, limited computational resources and/or limited access to human experts. Domains which include the vast majority of real-life applications. This paper conducts an experimental evaluation of TL, exploring its trade-offs with respect to performance, environmental footprint, human hours and computational requirements. Results highlight the cases were a cheap feature extraction approach is preferable, and the situations where an expensive fine-tuning effort may be worth the added cost. Finally, a set of guidelines on the use of TL are proposed.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2211.04347
- https://arxiv.org/pdf/2211.04347
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4308672412
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4308672412Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2211.04347Digital Object Identifier
- Title
-
When & How to Transfer with Transfer LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-08Full publication date if available
- Authors
-
Adrián Tormos, Darío Garcia-Gasulla, Víctor Giménez-Ábalos, Sergio Álvarez-NapagaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2211.04347Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2211.04347Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2211.04347Direct OA link when available
- Concepts
-
Computer science, Reuse, Transfer of learning, Task (project management), Deep learning, Set (abstract data type), De facto, Artificial intelligence, Footprint, Machine learning, Transfer (computing), Feature (linguistics), Image (mathematics), Data science, Systems engineering, Engineering, Biology, Programming language, Philosophy, Linguistics, Waste management, Law, Political science, Paleontology, Parallel computingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4308672412 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2211.04347 |
| ids.doi | https://doi.org/10.48550/arxiv.2211.04347 |
| ids.openalex | https://openalex.org/W4308672412 |
| fwci | |
| type | preprint |
| title | When & How to Transfer with Transfer Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T11714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9879000186920166 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Multimodal Machine Learning Applications |
| topics[2].id | https://openalex.org/T11775 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9835000038146973 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7402427196502686 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C206588197 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7398290634155273 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q846574 |
| concepts[1].display_name | Reuse |
| concepts[2].id | https://openalex.org/C150899416 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7008405923843384 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[2].display_name | Transfer of learning |
| concepts[3].id | https://openalex.org/C2780451532 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6795661449432373 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[3].display_name | Task (project management) |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6587944626808167 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C177264268 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6083555221557617 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[5].display_name | Set (abstract data type) |
| concepts[6].id | https://openalex.org/C2992317946 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6069622039794922 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q712144 |
| concepts[6].display_name | De facto |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5853923559188843 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C132943942 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5828539729118347 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2562511 |
| concepts[8].display_name | Footprint |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4879855513572693 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C2776175482 |
| concepts[10].level | 2 |
| concepts[10].score | 0.48733457922935486 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1195816 |
| concepts[10].display_name | Transfer (computing) |
| concepts[11].id | https://openalex.org/C2776401178 |
| concepts[11].level | 2 |
| concepts[11].score | 0.48586198687553406 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[11].display_name | Feature (linguistics) |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.42683082818984985 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C2522767166 |
| concepts[13].level | 1 |
| concepts[13].score | 0.34905850887298584 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[13].display_name | Data science |
| concepts[14].id | https://openalex.org/C201995342 |
| concepts[14].level | 1 |
| concepts[14].score | 0.11729994416236877 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[14].display_name | Systems engineering |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.10225442051887512 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| concepts[19].id | https://openalex.org/C41895202 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[19].display_name | Linguistics |
| concepts[20].id | https://openalex.org/C548081761 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q180388 |
| concepts[20].display_name | Waste management |
| concepts[21].id | https://openalex.org/C199539241 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[21].display_name | Law |
| concepts[22].id | https://openalex.org/C17744445 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[22].display_name | Political science |
| concepts[23].id | https://openalex.org/C151730666 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[23].display_name | Paleontology |
| concepts[24].id | https://openalex.org/C173608175 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[24].display_name | Parallel computing |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7402427196502686 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/reuse |
| keywords[1].score | 0.7398290634155273 |
| keywords[1].display_name | Reuse |
| keywords[2].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[2].score | 0.7008405923843384 |
| keywords[2].display_name | Transfer of learning |
| keywords[3].id | https://openalex.org/keywords/task |
| keywords[3].score | 0.6795661449432373 |
| keywords[3].display_name | Task (project management) |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.6587944626808167 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/set |
| keywords[5].score | 0.6083555221557617 |
| keywords[5].display_name | Set (abstract data type) |
| keywords[6].id | https://openalex.org/keywords/de-facto |
| keywords[6].score | 0.6069622039794922 |
| keywords[6].display_name | De facto |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.5853923559188843 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/footprint |
| keywords[8].score | 0.5828539729118347 |
| keywords[8].display_name | Footprint |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.4879855513572693 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/transfer |
| keywords[10].score | 0.48733457922935486 |
| keywords[10].display_name | Transfer (computing) |
| keywords[11].id | https://openalex.org/keywords/feature |
| keywords[11].score | 0.48586198687553406 |
| keywords[11].display_name | Feature (linguistics) |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.42683082818984985 |
| keywords[12].display_name | Image (mathematics) |
| keywords[13].id | https://openalex.org/keywords/data-science |
| keywords[13].score | 0.34905850887298584 |
| keywords[13].display_name | Data science |
| keywords[14].id | https://openalex.org/keywords/systems-engineering |
| keywords[14].score | 0.11729994416236877 |
| keywords[14].display_name | Systems engineering |
| keywords[15].id | https://openalex.org/keywords/engineering |
| keywords[15].score | 0.10225442051887512 |
| keywords[15].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2211.04347 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2211.04347 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2211.04347 |
| locations[1].id | pmh:oai:zenodo.org:8014324 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400562 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | cc-by-nc-nd |
| locations[1].pdf_url | https://zenodo.org/record/8014324 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/conferencePaper |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arXiv.2211.04347 |
| locations[2].id | doi:10.48550/arxiv.2211.04347 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2211.04347 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5001312222 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1658-9393 |
| authorships[0].author.display_name | Adrián Tormos |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tormos, Adrian |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5010831226 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6732-5641 |
| authorships[1].author.display_name | Darío Garcia-Gasulla |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Garcia-Gasulla, Dario |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5081818290 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4514-6145 |
| authorships[2].author.display_name | Víctor Giménez-Ábalos |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gimenez-Abalos, Victor |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5028049729 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9946-9703 |
| authorships[3].author.display_name | Sergio Álvarez-Napagao |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Alvarez-Napagao, Sergio |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2211.04347 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | When & How to Transfer with Transfer Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W2807906686, https://openalex.org/W2794909825, https://openalex.org/W4247715995, https://openalex.org/W2594962586, https://openalex.org/W2518047880, https://openalex.org/W3175075103, https://openalex.org/W2371349926, https://openalex.org/W2052813026, https://openalex.org/W2365515864, https://openalex.org/W2319480434 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2211.04347 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2211.04347 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2211.04347 |
| primary_location.id | pmh:oai:arXiv.org:2211.04347 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2211.04347 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2211.04347 |
| publication_date | 2022-11-08 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 98, 120 |
| abstract_inverted_index.By | 36 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.TL | 40, 128 |
| abstract_inverted_index.an | 74, 109 |
| abstract_inverted_index.be | 28, 114 |
| abstract_inverted_index.de | 9 |
| abstract_inverted_index.in | 47 |
| abstract_inverted_index.is | 103 |
| abstract_inverted_index.of | 44, 68, 77, 122, 127 |
| abstract_inverted_index.on | 124 |
| abstract_inverted_index.to | 27, 59, 84 |
| abstract_inverted_index.TL, | 78 |
| abstract_inverted_index.and | 90, 105 |
| abstract_inverted_index.are | 129 |
| abstract_inverted_index.for | 21, 30 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.its | 80 |
| abstract_inverted_index.may | 113 |
| abstract_inverted_index.one | 22 |
| abstract_inverted_index.set | 121 |
| abstract_inverted_index.the | 8, 42, 65, 95, 106, 116, 125 |
| abstract_inverted_index.use | 43, 126 |
| abstract_inverted_index.(TL) | 5 |
| abstract_inverted_index.This | 71 |
| abstract_inverted_index.been | 25 |
| abstract_inverted_index.data | 51 |
| abstract_inverted_index.deep | 1, 38, 45 |
| abstract_inverted_index.have | 24 |
| abstract_inverted_index.task | 23 |
| abstract_inverted_index.vast | 66 |
| abstract_inverted_index.were | 97 |
| abstract_inverted_index.when | 12 |
| abstract_inverted_index.with | 14, 49, 82 |
| abstract_inverted_index.added | 117 |
| abstract_inverted_index.cases | 96 |
| abstract_inverted_index.cheap | 99 |
| abstract_inverted_index.cost. | 118 |
| abstract_inverted_index.facto | 10 |
| abstract_inverted_index.hours | 89 |
| abstract_inverted_index.human | 60, 88 |
| abstract_inverted_index.image | 15 |
| abstract_inverted_index.other | 31 |
| abstract_inverted_index.paper | 72 |
| abstract_inverted_index.shown | 26 |
| abstract_inverted_index.where | 108 |
| abstract_inverted_index.which | 63 |
| abstract_inverted_index.worth | 115 |
| abstract_inverted_index.Visual | 18 |
| abstract_inverted_index.access | 58 |
| abstract_inverted_index.and/or | 56 |
| abstract_inverted_index.become | 7 |
| abstract_inverted_index.effort | 112 |
| abstract_inverted_index.learnt | 20 |
| abstract_inverted_index.models | 46 |
| abstract_inverted_index.tasks, | 32 |
| abstract_inverted_index.tasks. | 17 |
| abstract_inverted_index.Domains | 62 |
| abstract_inverted_index.Results | 93 |
| abstract_inverted_index.dealing | 13 |
| abstract_inverted_index.domains | 48 |
| abstract_inverted_index.enables | 41 |
| abstract_inverted_index.feature | 100 |
| abstract_inverted_index.include | 64 |
| abstract_inverted_index.limited | 50, 53, 57 |
| abstract_inverted_index.related | 16 |
| abstract_inverted_index.respect | 83 |
| abstract_inverted_index.reusing | 37 |
| abstract_inverted_index.Finally, | 119 |
| abstract_inverted_index.approach | 11, 102 |
| abstract_inverted_index.conducts | 73 |
| abstract_inverted_index.experts. | 61 |
| abstract_inverted_index.features | 19 |
| abstract_inverted_index.learning | 4 |
| abstract_inverted_index.majority | 67 |
| abstract_inverted_index.reusable | 29 |
| abstract_inverted_index.transfer | 3 |
| abstract_inverted_index.expensive | 110 |
| abstract_inverted_index.exploring | 79 |
| abstract_inverted_index.highlight | 94 |
| abstract_inverted_index.improving | 33 |
| abstract_inverted_index.learning, | 2 |
| abstract_inverted_index.proposed. | 130 |
| abstract_inverted_index.real-life | 69 |
| abstract_inverted_index.resources | 55 |
| abstract_inverted_index.evaluation | 76 |
| abstract_inverted_index.extraction | 101 |
| abstract_inverted_index.footprint, | 87 |
| abstract_inverted_index.guidelines | 123 |
| abstract_inverted_index.situations | 107 |
| abstract_inverted_index.trade-offs | 81 |
| abstract_inverted_index.fine-tuning | 111 |
| abstract_inverted_index.performance | 34 |
| abstract_inverted_index.preferable, | 104 |
| abstract_inverted_index.experimental | 75 |
| abstract_inverted_index.performance, | 85 |
| abstract_inverted_index.applications. | 70 |
| abstract_inverted_index.availability, | 52 |
| abstract_inverted_index.computational | 54, 91 |
| abstract_inverted_index.environmental | 86 |
| abstract_inverted_index.requirements. | 92 |
| abstract_inverted_index.significantly. | 35 |
| abstract_inverted_index.representations, | 39 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/12 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Responsible consumption and production |
| citation_normalized_percentile |