When Deep Reinforcement Learning Meets Federated Learning: Intelligent Multi-Timescale Resource Management for Multi-access Edge Computing in 5G Ultra Dense Network Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2009.10601
Ultra-dense edge computing (UDEC) has great potential, especially in the 5G era, but it still faces challenges in its current solutions, such as the lack of: i) efficient utilization of multiple 5G resources (e.g., computation, communication, storage and service resources); ii) low overhead offloading decision making and resource allocation strategies; and iii) privacy and security protection schemes. Thus, we first propose an intelligent ultra-dense edge computing (I-UDEC) framework, which integrates blockchain and Artificial Intelligence (AI) into 5G ultra-dense edge computing networks. First, we show the architecture of the framework. Then, in order to achieve real-time and low overhead computation offloading decisions and resource allocation strategies, we design a novel two-timescale deep reinforcement learning (\textit{2Ts-DRL}) approach, consisting of a fast-timescale and a slow-timescale learning process, respectively. The primary objective is to minimize the total offloading delay and network resource usage by jointly optimizing computation offloading, resource allocation and service caching placement. We also leverage federated learning (FL) to train the \textit{2Ts-DRL} model in a distributed manner, aiming to protect the edge devices' data privacy. Simulation results corroborate the effectiveness of both the \textit{2Ts-DRL} and FL in the I-UDEC framework and prove that our proposed algorithm can reduce task execution time up to 31.87%.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2009.10601
- https://arxiv.org/pdf/2009.10601
- OA Status
- green
- Cited By
- 1
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3088816620
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3088816620Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2009.10601Digital Object Identifier
- Title
-
When Deep Reinforcement Learning Meets Federated Learning: Intelligent Multi-Timescale Resource Management for Multi-access Edge Computing in 5G Ultra Dense NetworkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-09-22Full publication date if available
- Authors
-
Shuai Yu, Xu Chen, Zhi Zhou, Xiaowen Gong, Di WuList of authors in order
- Landing page
-
https://arxiv.org/abs/2009.10601Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2009.10601Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2009.10601Direct OA link when available
- Concepts
-
Reinforcement learning, Computer science, Overhead (engineering), Edge computing, Leverage (statistics), Distributed computing, Resource allocation, Enhanced Data Rates for GSM Evolution, Computation, Edge device, Computer network, Artificial intelligence, Cloud computing, Algorithm, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3088816620 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2009.10601 |
| ids.doi | https://doi.org/10.48550/arxiv.2009.10601 |
| ids.mag | 3088816620 |
| ids.openalex | https://openalex.org/W3088816620 |
| fwci | |
| type | preprint |
| title | When Deep Reinforcement Learning Meets Federated Learning: Intelligent Multi-Timescale Resource Management for Multi-access Edge Computing in 5G Ultra Dense Network |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9976000189781189 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T10273 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9973000288009644 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | IoT and Edge/Fog Computing |
| topics[2].id | https://openalex.org/T11458 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9919000267982483 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Wireless Communication Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8300909996032715 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7539763450622559 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2779960059 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6951614022254944 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7113681 |
| concepts[2].display_name | Overhead (engineering) |
| concepts[3].id | https://openalex.org/C2778456923 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6878954172134399 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5337692 |
| concepts[3].display_name | Edge computing |
| concepts[4].id | https://openalex.org/C153083717 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6540637612342834 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[4].display_name | Leverage (statistics) |
| concepts[5].id | https://openalex.org/C120314980 |
| concepts[5].level | 1 |
| concepts[5].score | 0.6240004301071167 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[5].display_name | Distributed computing |
| concepts[6].id | https://openalex.org/C29202148 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5553210377693176 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q287260 |
| concepts[6].display_name | Resource allocation |
| concepts[7].id | https://openalex.org/C162307627 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4738205671310425 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[7].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[8].id | https://openalex.org/C45374587 |
| concepts[8].level | 2 |
| concepts[8].score | 0.47307881712913513 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[8].display_name | Computation |
| concepts[9].id | https://openalex.org/C138236772 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4645051658153534 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q25098575 |
| concepts[9].display_name | Edge device |
| concepts[10].id | https://openalex.org/C31258907 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3887231647968292 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[10].display_name | Computer network |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3859992027282715 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C79974875 |
| concepts[12].level | 2 |
| concepts[12].score | 0.11492481827735901 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[12].display_name | Cloud computing |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.09286883473396301 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.8300909996032715 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7539763450622559 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/overhead |
| keywords[2].score | 0.6951614022254944 |
| keywords[2].display_name | Overhead (engineering) |
| keywords[3].id | https://openalex.org/keywords/edge-computing |
| keywords[3].score | 0.6878954172134399 |
| keywords[3].display_name | Edge computing |
| keywords[4].id | https://openalex.org/keywords/leverage |
| keywords[4].score | 0.6540637612342834 |
| keywords[4].display_name | Leverage (statistics) |
| keywords[5].id | https://openalex.org/keywords/distributed-computing |
| keywords[5].score | 0.6240004301071167 |
| keywords[5].display_name | Distributed computing |
| keywords[6].id | https://openalex.org/keywords/resource-allocation |
| keywords[6].score | 0.5553210377693176 |
| keywords[6].display_name | Resource allocation |
| keywords[7].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[7].score | 0.4738205671310425 |
| keywords[7].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[8].id | https://openalex.org/keywords/computation |
| keywords[8].score | 0.47307881712913513 |
| keywords[8].display_name | Computation |
| keywords[9].id | https://openalex.org/keywords/edge-device |
| keywords[9].score | 0.4645051658153534 |
| keywords[9].display_name | Edge device |
| keywords[10].id | https://openalex.org/keywords/computer-network |
| keywords[10].score | 0.3887231647968292 |
| keywords[10].display_name | Computer network |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.3859992027282715 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/cloud-computing |
| keywords[12].score | 0.11492481827735901 |
| keywords[12].display_name | Cloud computing |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.09286883473396301 |
| keywords[13].display_name | Algorithm |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2009.10601 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2009.10601 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2009.10601 |
| locations[1].id | doi:10.48550/arxiv.2009.10601 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2009.10601 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5053629236 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6822-3145 |
| authorships[0].author.display_name | Shuai Yu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shuai Yu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100385692 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9943-6020 |
| authorships[1].author.display_name | Xu Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xu Chen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100760218 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0987-9344 |
| authorships[2].author.display_name | Zhi Zhou |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhi Zhou |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5042081570 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5124-7941 |
| authorships[3].author.display_name | Xiaowen Gong |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiaowen Gong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5090899388 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6631-4887 |
| authorships[4].author.display_name | Di Wu |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Di Wu |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2009.10601 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | When Deep Reinforcement Learning Meets Federated Learning: Intelligent Multi-Timescale Resource Management for Multi-access Edge Computing in 5G Ultra Dense Network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9976000189781189 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W4322761281, https://openalex.org/W4238233472, https://openalex.org/W4313526662, https://openalex.org/W3111395152, https://openalex.org/W4312996489, https://openalex.org/W3106131444, https://openalex.org/W3216099748, https://openalex.org/W4205963435, https://openalex.org/W4313463379, https://openalex.org/W3214037210 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2009.10601 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2009.10601 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2009.10601 |
| primary_location.id | pmh:oai:arXiv.org:2009.10601 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2009.10601 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2009.10601 |
| publication_date | 2020-09-22 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W3016207298, https://openalex.org/W2086920995, https://openalex.org/W2976335444, https://openalex.org/W2912978522, https://openalex.org/W2962804345, https://openalex.org/W2757817063, https://openalex.org/W2980856918, https://openalex.org/W2963376050, https://openalex.org/W2014060493, https://openalex.org/W2150516182, https://openalex.org/W2101788345, https://openalex.org/W2535838896, https://openalex.org/W2300813249, https://openalex.org/W3023850691, https://openalex.org/W2344695221, https://openalex.org/W3046522680, https://openalex.org/W2796408617, https://openalex.org/W2982531698, https://openalex.org/W3037582816, https://openalex.org/W1688335290, https://openalex.org/W2950254710, https://openalex.org/W2890928364, https://openalex.org/W2915527239, https://openalex.org/W2950865323, https://openalex.org/W2772819097, https://openalex.org/W3010168681, https://openalex.org/W2761862361, https://openalex.org/W2219628894, https://openalex.org/W3015625671, https://openalex.org/W2398409936, https://openalex.org/W2962814013, https://openalex.org/W2067398275, https://openalex.org/W2963300197, https://openalex.org/W3021026170, https://openalex.org/W2585425668 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 107, 117, 120, 162 |
| abstract_inverted_index.5G | 10, 31, 76 |
| abstract_inverted_index.FL | 183 |
| abstract_inverted_index.We | 150 |
| abstract_inverted_index.an | 61 |
| abstract_inverted_index.as | 22 |
| abstract_inverted_index.by | 139 |
| abstract_inverted_index.i) | 26 |
| abstract_inverted_index.in | 8, 17, 90, 161, 184 |
| abstract_inverted_index.is | 128 |
| abstract_inverted_index.it | 13 |
| abstract_inverted_index.of | 29, 86, 116, 178 |
| abstract_inverted_index.to | 92, 129, 156, 166, 200 |
| abstract_inverted_index.up | 199 |
| abstract_inverted_index.we | 58, 82, 105 |
| abstract_inverted_index.The | 125 |
| abstract_inverted_index.and | 37, 46, 50, 53, 71, 95, 101, 119, 135, 146, 182, 188 |
| abstract_inverted_index.but | 12 |
| abstract_inverted_index.can | 194 |
| abstract_inverted_index.has | 4 |
| abstract_inverted_index.ii) | 40 |
| abstract_inverted_index.its | 18 |
| abstract_inverted_index.low | 41, 96 |
| abstract_inverted_index.of: | 25 |
| abstract_inverted_index.our | 191 |
| abstract_inverted_index.the | 9, 23, 84, 87, 131, 158, 168, 176, 180, 185 |
| abstract_inverted_index.(AI) | 74 |
| abstract_inverted_index.(FL) | 155 |
| abstract_inverted_index.also | 151 |
| abstract_inverted_index.both | 179 |
| abstract_inverted_index.data | 171 |
| abstract_inverted_index.deep | 110 |
| abstract_inverted_index.edge | 1, 64, 78, 169 |
| abstract_inverted_index.era, | 11 |
| abstract_inverted_index.iii) | 51 |
| abstract_inverted_index.into | 75 |
| abstract_inverted_index.lack | 24 |
| abstract_inverted_index.show | 83 |
| abstract_inverted_index.such | 21 |
| abstract_inverted_index.task | 196 |
| abstract_inverted_index.that | 190 |
| abstract_inverted_index.time | 198 |
| abstract_inverted_index.Then, | 89 |
| abstract_inverted_index.Thus, | 57 |
| abstract_inverted_index.delay | 134 |
| abstract_inverted_index.faces | 15 |
| abstract_inverted_index.first | 59 |
| abstract_inverted_index.great | 5 |
| abstract_inverted_index.model | 160 |
| abstract_inverted_index.novel | 108 |
| abstract_inverted_index.order | 91 |
| abstract_inverted_index.prove | 189 |
| abstract_inverted_index.still | 14 |
| abstract_inverted_index.total | 132 |
| abstract_inverted_index.train | 157 |
| abstract_inverted_index.usage | 138 |
| abstract_inverted_index.which | 68 |
| abstract_inverted_index.(UDEC) | 3 |
| abstract_inverted_index.(e.g., | 33 |
| abstract_inverted_index.First, | 81 |
| abstract_inverted_index.I-UDEC | 186 |
| abstract_inverted_index.aiming | 165 |
| abstract_inverted_index.design | 106 |
| abstract_inverted_index.making | 45 |
| abstract_inverted_index.reduce | 195 |
| abstract_inverted_index.31.87%. | 201 |
| abstract_inverted_index.achieve | 93 |
| abstract_inverted_index.caching | 148 |
| abstract_inverted_index.current | 19 |
| abstract_inverted_index.jointly | 140 |
| abstract_inverted_index.manner, | 164 |
| abstract_inverted_index.network | 136 |
| abstract_inverted_index.primary | 126 |
| abstract_inverted_index.privacy | 52 |
| abstract_inverted_index.propose | 60 |
| abstract_inverted_index.protect | 167 |
| abstract_inverted_index.results | 174 |
| abstract_inverted_index.service | 38, 147 |
| abstract_inverted_index.storage | 36 |
| abstract_inverted_index.(I-UDEC) | 66 |
| abstract_inverted_index.decision | 44 |
| abstract_inverted_index.devices' | 170 |
| abstract_inverted_index.learning | 112, 122, 154 |
| abstract_inverted_index.leverage | 152 |
| abstract_inverted_index.minimize | 130 |
| abstract_inverted_index.multiple | 30 |
| abstract_inverted_index.overhead | 42, 97 |
| abstract_inverted_index.privacy. | 172 |
| abstract_inverted_index.process, | 123 |
| abstract_inverted_index.proposed | 192 |
| abstract_inverted_index.resource | 47, 102, 137, 144 |
| abstract_inverted_index.schemes. | 56 |
| abstract_inverted_index.security | 54 |
| abstract_inverted_index.algorithm | 193 |
| abstract_inverted_index.approach, | 114 |
| abstract_inverted_index.computing | 2, 65, 79 |
| abstract_inverted_index.decisions | 100 |
| abstract_inverted_index.efficient | 27 |
| abstract_inverted_index.execution | 197 |
| abstract_inverted_index.federated | 153 |
| abstract_inverted_index.framework | 187 |
| abstract_inverted_index.networks. | 80 |
| abstract_inverted_index.objective | 127 |
| abstract_inverted_index.real-time | 94 |
| abstract_inverted_index.resources | 32 |
| abstract_inverted_index.Artificial | 72 |
| abstract_inverted_index.Simulation | 173 |
| abstract_inverted_index.allocation | 48, 103, 145 |
| abstract_inverted_index.blockchain | 70 |
| abstract_inverted_index.challenges | 16 |
| abstract_inverted_index.consisting | 115 |
| abstract_inverted_index.especially | 7 |
| abstract_inverted_index.framework, | 67 |
| abstract_inverted_index.framework. | 88 |
| abstract_inverted_index.integrates | 69 |
| abstract_inverted_index.offloading | 43, 99, 133 |
| abstract_inverted_index.optimizing | 141 |
| abstract_inverted_index.placement. | 149 |
| abstract_inverted_index.potential, | 6 |
| abstract_inverted_index.protection | 55 |
| abstract_inverted_index.solutions, | 20 |
| abstract_inverted_index.Ultra-dense | 0 |
| abstract_inverted_index.computation | 98, 142 |
| abstract_inverted_index.corroborate | 175 |
| abstract_inverted_index.distributed | 163 |
| abstract_inverted_index.intelligent | 62 |
| abstract_inverted_index.offloading, | 143 |
| abstract_inverted_index.resources); | 39 |
| abstract_inverted_index.strategies, | 104 |
| abstract_inverted_index.strategies; | 49 |
| abstract_inverted_index.ultra-dense | 63, 77 |
| abstract_inverted_index.utilization | 28 |
| abstract_inverted_index.Intelligence | 73 |
| abstract_inverted_index.architecture | 85 |
| abstract_inverted_index.computation, | 34 |
| abstract_inverted_index.effectiveness | 177 |
| abstract_inverted_index.reinforcement | 111 |
| abstract_inverted_index.respectively. | 124 |
| abstract_inverted_index.two-timescale | 109 |
| abstract_inverted_index.communication, | 35 |
| abstract_inverted_index.fast-timescale | 118 |
| abstract_inverted_index.slow-timescale | 121 |
| abstract_inverted_index.\textit{2Ts-DRL} | 159, 181 |
| abstract_inverted_index.(\textit{2Ts-DRL}) | 113 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |