When Language Model Guides Vision: Grounding DINO for Cattle Muzzle Detection Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.06427
Muzzle patterns are among the most effective biometric traits for cattle identification. Fast and accurate detection of the muzzle region as the region of interest is critical to automatic visual cattle identification.. Earlier approaches relied on manual detection, which is labor-intensive and inconsistent. Recently, automated methods using supervised models like YOLO have become popular for muzzle detection. Although effective, these methods require extensive annotated datasets and tend to be trained data-dependent, limiting their performance on new or unseen cattle. To address these limitations, this study proposes a zero-shot muzzle detection framework based on Grounding DINO, a vision-language model capable of detecting muzzles without any task-specific training or annotated data. This approach leverages natural language prompts to guide detection, enabling scalable and flexible muzzle localization across diverse breeds and environments. Our model achieves a mean Average Precision (mAP)@0.5 of 76.8\%, demonstrating promising performance without requiring annotated data. To our knowledge, this is the first research to provide a real-world, industry-oriented, and annotation-free solution for cattle muzzle detection. The framework offers a practical alternative to supervised methods, promising improved adaptability and ease of deployment in livestock monitoring applications.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.06427
- https://arxiv.org/pdf/2509.06427
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414757133
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414757133Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.06427Digital Object Identifier
- Title
-
When Language Model Guides Vision: Grounding DINO for Cattle Muzzle DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-08Full publication date if available
- Authors
-
Rabin Dulal, Lihong Zheng, Muhammad Ashad KabirList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.06427Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.06427Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.06427Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414757133 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.06427 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.06427 |
| ids.openalex | https://openalex.org/W4414757133 |
| fwci | |
| type | preprint |
| title | When Language Model Guides Vision: Grounding DINO for Cattle Muzzle Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12486 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.4339999854564667 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1106 |
| topics[0].subfield.display_name | Food Science |
| topics[0].display_name | Food Supply Chain Traceability |
| topics[1].id | https://openalex.org/T12282 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.3901999890804291 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Mineral Processing and Grinding |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.06427 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.06427 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.06427 |
| locations[1].id | doi:10.48550/arxiv.2509.06427 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.06427 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5013301746 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1260-535X |
| authorships[0].author.display_name | Rabin Dulal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dulal, Rabin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5030828106 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5728-4356 |
| authorships[1].author.display_name | Lihong Zheng |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zheng, Lihong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5085181943 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6798-6535 |
| authorships[2].author.display_name | Muhammad Ashad Kabir |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Kabir, Muhammad Ashad |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.06427 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | When Language Model Guides Vision: Grounding DINO for Cattle Muzzle Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12486 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.4339999854564667 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1106 |
| primary_topic.subfield.display_name | Food Science |
| primary_topic.display_name | Food Supply Chain Traceability |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.06427 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.06427 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.06427 |
| primary_location.id | pmh:oai:arXiv.org:2509.06427 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.06427 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.06427 |
| publication_date | 2025-09-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 86, 95, 132, 156, 169 |
| abstract_inverted_index.To | 79, 146 |
| abstract_inverted_index.as | 20 |
| abstract_inverted_index.be | 68 |
| abstract_inverted_index.in | 182 |
| abstract_inverted_index.is | 25, 39, 150 |
| abstract_inverted_index.of | 16, 23, 99, 137, 180 |
| abstract_inverted_index.on | 35, 74, 92 |
| abstract_inverted_index.or | 76, 106 |
| abstract_inverted_index.to | 27, 67, 115, 154, 172 |
| abstract_inverted_index.Our | 129 |
| abstract_inverted_index.The | 166 |
| abstract_inverted_index.and | 13, 41, 65, 120, 127, 159, 178 |
| abstract_inverted_index.any | 103 |
| abstract_inverted_index.are | 2 |
| abstract_inverted_index.for | 9, 54, 162 |
| abstract_inverted_index.new | 75 |
| abstract_inverted_index.our | 147 |
| abstract_inverted_index.the | 4, 17, 21, 151 |
| abstract_inverted_index.Fast | 12 |
| abstract_inverted_index.This | 109 |
| abstract_inverted_index.YOLO | 50 |
| abstract_inverted_index.ease | 179 |
| abstract_inverted_index.have | 51 |
| abstract_inverted_index.like | 49 |
| abstract_inverted_index.mean | 133 |
| abstract_inverted_index.most | 5 |
| abstract_inverted_index.tend | 66 |
| abstract_inverted_index.this | 83, 149 |
| abstract_inverted_index.DINO, | 94 |
| abstract_inverted_index.among | 3 |
| abstract_inverted_index.based | 91 |
| abstract_inverted_index.data. | 108, 145 |
| abstract_inverted_index.first | 152 |
| abstract_inverted_index.guide | 116 |
| abstract_inverted_index.model | 97, 130 |
| abstract_inverted_index.study | 84 |
| abstract_inverted_index.their | 72 |
| abstract_inverted_index.these | 59, 81 |
| abstract_inverted_index.using | 46 |
| abstract_inverted_index.which | 38 |
| abstract_inverted_index.Muzzle | 0 |
| abstract_inverted_index.across | 124 |
| abstract_inverted_index.become | 52 |
| abstract_inverted_index.breeds | 126 |
| abstract_inverted_index.cattle | 10, 30, 163 |
| abstract_inverted_index.manual | 36 |
| abstract_inverted_index.models | 48 |
| abstract_inverted_index.muzzle | 18, 55, 88, 122, 164 |
| abstract_inverted_index.offers | 168 |
| abstract_inverted_index.region | 19, 22 |
| abstract_inverted_index.relied | 34 |
| abstract_inverted_index.traits | 8 |
| abstract_inverted_index.unseen | 77 |
| abstract_inverted_index.visual | 29 |
| abstract_inverted_index.76.8\%, | 138 |
| abstract_inverted_index.Average | 134 |
| abstract_inverted_index.Earlier | 32 |
| abstract_inverted_index.address | 80 |
| abstract_inverted_index.capable | 98 |
| abstract_inverted_index.cattle. | 78 |
| abstract_inverted_index.diverse | 125 |
| abstract_inverted_index.methods | 45, 60 |
| abstract_inverted_index.muzzles | 101 |
| abstract_inverted_index.natural | 112 |
| abstract_inverted_index.popular | 53 |
| abstract_inverted_index.prompts | 114 |
| abstract_inverted_index.provide | 155 |
| abstract_inverted_index.require | 61 |
| abstract_inverted_index.trained | 69 |
| abstract_inverted_index.without | 102, 142 |
| abstract_inverted_index.Although | 57 |
| abstract_inverted_index.accurate | 14 |
| abstract_inverted_index.achieves | 131 |
| abstract_inverted_index.approach | 110 |
| abstract_inverted_index.critical | 26 |
| abstract_inverted_index.datasets | 64 |
| abstract_inverted_index.enabling | 118 |
| abstract_inverted_index.flexible | 121 |
| abstract_inverted_index.improved | 176 |
| abstract_inverted_index.interest | 24 |
| abstract_inverted_index.language | 113 |
| abstract_inverted_index.limiting | 71 |
| abstract_inverted_index.methods, | 174 |
| abstract_inverted_index.patterns | 1 |
| abstract_inverted_index.proposes | 85 |
| abstract_inverted_index.research | 153 |
| abstract_inverted_index.scalable | 119 |
| abstract_inverted_index.solution | 161 |
| abstract_inverted_index.training | 105 |
| abstract_inverted_index.(mAP)@0.5 | 136 |
| abstract_inverted_index.Grounding | 93 |
| abstract_inverted_index.Precision | 135 |
| abstract_inverted_index.Recently, | 43 |
| abstract_inverted_index.annotated | 63, 107, 144 |
| abstract_inverted_index.automated | 44 |
| abstract_inverted_index.automatic | 28 |
| abstract_inverted_index.biometric | 7 |
| abstract_inverted_index.detecting | 100 |
| abstract_inverted_index.detection | 15, 89 |
| abstract_inverted_index.effective | 6 |
| abstract_inverted_index.extensive | 62 |
| abstract_inverted_index.framework | 90, 167 |
| abstract_inverted_index.leverages | 111 |
| abstract_inverted_index.livestock | 183 |
| abstract_inverted_index.practical | 170 |
| abstract_inverted_index.promising | 140, 175 |
| abstract_inverted_index.requiring | 143 |
| abstract_inverted_index.zero-shot | 87 |
| abstract_inverted_index.approaches | 33 |
| abstract_inverted_index.deployment | 181 |
| abstract_inverted_index.detection, | 37, 117 |
| abstract_inverted_index.detection. | 56, 165 |
| abstract_inverted_index.effective, | 58 |
| abstract_inverted_index.knowledge, | 148 |
| abstract_inverted_index.monitoring | 184 |
| abstract_inverted_index.supervised | 47, 173 |
| abstract_inverted_index.alternative | 171 |
| abstract_inverted_index.performance | 73, 141 |
| abstract_inverted_index.real-world, | 157 |
| abstract_inverted_index.adaptability | 177 |
| abstract_inverted_index.limitations, | 82 |
| abstract_inverted_index.localization | 123 |
| abstract_inverted_index.applications. | 185 |
| abstract_inverted_index.demonstrating | 139 |
| abstract_inverted_index.environments. | 128 |
| abstract_inverted_index.inconsistent. | 42 |
| abstract_inverted_index.task-specific | 104 |
| abstract_inverted_index.annotation-free | 160 |
| abstract_inverted_index.data-dependent, | 70 |
| abstract_inverted_index.identification. | 11 |
| abstract_inverted_index.labor-intensive | 40 |
| abstract_inverted_index.vision-language | 96 |
| abstract_inverted_index.identification.. | 31 |
| abstract_inverted_index.industry-oriented, | 158 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |