[White blood segmentation based on dual path and atrous spatial pyramid pooling]. Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.7507/1001-5515.202107043
The count and recognition of white blood cells in blood smear images play an important role in the diagnosis of blood diseases including leukemia. Traditional manual test results are easily disturbed by many factors. It is necessary to develop an automatic leukocyte analysis system to provide doctors with auxiliary diagnosis, and blood leukocyte segmentation is the basis of automatic analysis. In this paper, we improved the U-Net model and proposed a segmentation algorithm of leukocyte image based on dual path and atrous spatial pyramid pooling. Firstly, the dual path network was introduced into the feature encoder to extract multi-scale leukocyte features, and the atrous spatial pyramid pooling was used to enhance the feature extraction ability of the network. Then the feature decoder composed of convolution and deconvolution was used to restore the segmented target to the original image size to realize the pixel level segmentation of blood leukocytes. Finally, qualitative and quantitative experiments were carried out on three leukocyte data sets to verify the effectiveness of the algorithm. The results showed that compared with other representative algorithms, the proposed blood leukocyte segmentation algorithm had better segmentation results, and the mIoU value could reach more than 0.97. It is hoped that the method could be conducive to the automatic auxiliary diagnosis of blood diseases in the future.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://pubmed.ncbi.nlm.nih.gov/35788516
- OA Status
- green
- Cited By
- 2
- References
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283824863
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283824863Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.7507/1001-5515.202107043Digital Object Identifier
- Title
-
[White blood segmentation based on dual path and atrous spatial pyramid pooling].Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-25Full publication date if available
- Authors
-
Zuoyong Li, Yan Lü, Xinrong Cao, Lida Qiu, Xuejun QinList of authors in order
- Landing page
-
https://pubmed.ncbi.nlm.nih.gov/35788516Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://pmc.ncbi.nlm.nih.gov/articles/PMC10950761/pdf/swyxgcxzz-39-3-471.pdfDirect OA link when available
- Concepts
-
Artificial intelligence, Pyramid (geometry), Segmentation, Pattern recognition (psychology), Pooling, Feature (linguistics), Computer science, Image segmentation, Path (computing), Computer vision, Pixel, Mathematics, Geometry, Linguistics, Philosophy, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
6Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283824863 |
|---|---|
| doi | https://doi.org/10.7507/1001-5515.202107043 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35788516 |
| ids.openalex | https://openalex.org/W4283824863 |
| fwci | 0.2475836 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D007962 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Leukocytes |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000465 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Algorithms |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D007962 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Leukocytes |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000465 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Algorithms |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D007962 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Leukocytes |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000465 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Algorithms |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D007962 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Leukocytes |
| type | article |
| title | [White blood segmentation based on dual path and atrous spatial pyramid pooling]. |
| biblio.issue | 3 |
| biblio.volume | 39 |
| biblio.last_page | 479 |
| biblio.first_page | 471 |
| topics[0].id | https://openalex.org/T12874 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Digital Imaging for Blood Diseases |
| topics[1].id | https://openalex.org/T13114 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9865000247955322 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Image Processing Techniques and Applications |
| topics[2].id | https://openalex.org/T12859 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9728999733924866 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1304 |
| topics[2].subfield.display_name | Biophysics |
| topics[2].display_name | Cell Image Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7388558983802795 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C142575187 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7329785823822021 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3358290 |
| concepts[1].display_name | Pyramid (geometry) |
| concepts[2].id | https://openalex.org/C89600930 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6750376224517822 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[2].display_name | Segmentation |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6482247710227966 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C70437156 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6148306131362915 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7228652 |
| concepts[4].display_name | Pooling |
| concepts[5].id | https://openalex.org/C2776401178 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5634417533874512 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[5].display_name | Feature (linguistics) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.533548891544342 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C124504099 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5235790014266968 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[7].display_name | Image segmentation |
| concepts[8].id | https://openalex.org/C2777735758 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4634428322315216 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q817765 |
| concepts[8].display_name | Path (computing) |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.429416298866272 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C160633673 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42584678530693054 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[10].display_name | Pixel |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3050077557563782 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C2524010 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[12].display_name | Geometry |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7388558983802795 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/pyramid |
| keywords[1].score | 0.7329785823822021 |
| keywords[1].display_name | Pyramid (geometry) |
| keywords[2].id | https://openalex.org/keywords/segmentation |
| keywords[2].score | 0.6750376224517822 |
| keywords[2].display_name | Segmentation |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.6482247710227966 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/pooling |
| keywords[4].score | 0.6148306131362915 |
| keywords[4].display_name | Pooling |
| keywords[5].id | https://openalex.org/keywords/feature |
| keywords[5].score | 0.5634417533874512 |
| keywords[5].display_name | Feature (linguistics) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.533548891544342 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/image-segmentation |
| keywords[7].score | 0.5235790014266968 |
| keywords[7].display_name | Image segmentation |
| keywords[8].id | https://openalex.org/keywords/path |
| keywords[8].score | 0.4634428322315216 |
| keywords[8].display_name | Path (computing) |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.429416298866272 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/pixel |
| keywords[10].score | 0.42584678530693054 |
| keywords[10].display_name | Pixel |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.3050077557563782 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | pmid:35788516 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4306525036 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | PubMed |
| locations[0].source.host_organization | https://openalex.org/I1299303238 |
| locations[0].source.host_organization_name | National Institutes of Health |
| locations[0].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi |
| locations[0].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35788516 |
| locations[1].id | pmh:oai:pubmedcentral.nih.gov:10950761 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S2764455111 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed Central |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10950761/pdf/swyxgcxzz-39-3-471.pdf |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Sheng Wu Yi Xue Gong Cheng Xue Za Zhi |
| locations[1].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10950761 |
| indexed_in | pubmed |
| authorships[0].author.id | https://openalex.org/A5091320821 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0952-9915 |
| authorships[0].author.display_name | Zuoyong Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I354108 |
| authorships[0].affiliations[0].raw_affiliation_string | Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University), Fuzhou 350121, P. R. China. |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I354108 |
| authorships[0].affiliations[1].raw_affiliation_string | College of Computer and Control Engineering, Minjiang University, Fuzhou 350121, P. R. China. |
| authorships[0].institutions[0].id | https://openalex.org/I354108 |
| authorships[0].institutions[0].ror | https://ror.org/00s7tkw17 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I354108 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Minjiang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zuoyong Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Computer and Control Engineering, Minjiang University, Fuzhou 350121, P. R. China., Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University), Fuzhou 350121, P. R. China. |
| authorships[1].author.id | https://openalex.org/A5100729305 |
| authorships[1].author.orcid | https://orcid.org/0009-0006-0580-7745 |
| authorships[1].author.display_name | Yan Lü |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I354108 |
| authorships[1].affiliations[0].raw_affiliation_string | Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University), Fuzhou 350121, P. R. China. |
| authorships[1].institutions[0].id | https://openalex.org/I354108 |
| authorships[1].institutions[0].ror | https://ror.org/00s7tkw17 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I354108 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Minjiang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yan Lu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University), Fuzhou 350121, P. R. China. |
| authorships[2].author.id | https://openalex.org/A5065953090 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0113-015X |
| authorships[2].author.display_name | Xinrong Cao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I354108 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Computer and Control Engineering, Minjiang University, Fuzhou 350121, P. R. China. |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I354108 |
| authorships[2].affiliations[1].raw_affiliation_string | Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University), Fuzhou 350121, P. R. China. |
| authorships[2].institutions[0].id | https://openalex.org/I354108 |
| authorships[2].institutions[0].ror | https://ror.org/00s7tkw17 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I354108 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Minjiang University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xinrong Cao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Computer and Control Engineering, Minjiang University, Fuzhou 350121, P. R. China., Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University), Fuzhou 350121, P. R. China. |
| authorships[3].author.id | https://openalex.org/A5020295856 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Lida Qiu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I354108 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350121, P. R. China. |
| authorships[3].institutions[0].id | https://openalex.org/I354108 |
| authorships[3].institutions[0].ror | https://ror.org/00s7tkw17 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I354108 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Minjiang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lida Qiu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350121, P. R. China. |
| authorships[4].author.id | https://openalex.org/A5101972108 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1177-7937 |
| authorships[4].author.display_name | Xuejun Qin |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I118783713 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Clinical Laboratory, The People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350001, P. R. China. |
| authorships[4].institutions[0].id | https://openalex.org/I118783713 |
| authorships[4].institutions[0].ror | https://ror.org/05n0qbd70 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I118783713 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Fujian University of Traditional Chinese Medicine |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Xuejun Qin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Clinical Laboratory, The People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350001, P. R. China. |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10950761/pdf/swyxgcxzz-39-3-471.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | [White blood segmentation based on dual path and atrous spatial pyramid pooling]. |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12874 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Digital Imaging for Blood Diseases |
| related_works | https://openalex.org/W2953234277, https://openalex.org/W2626256601, https://openalex.org/W2022849497, https://openalex.org/W3081299480, https://openalex.org/W2407190427, https://openalex.org/W2907584218, https://openalex.org/W2919210741, https://openalex.org/W3002446410, https://openalex.org/W4390224712, https://openalex.org/W4322096758 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:10950761 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10950761/pdf/swyxgcxzz-39-3-471.pdf |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Sheng Wu Yi Xue Gong Cheng Xue Za Zhi |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10950761 |
| primary_location.id | pmid:35788516 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4306525036 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | PubMed |
| primary_location.source.host_organization | https://openalex.org/I1299303238 |
| primary_location.source.host_organization_name | National Institutes of Health |
| primary_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi |
| primary_location.landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35788516 |
| publication_date | 2022-06-25 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2395611524, https://openalex.org/W2963809521, https://openalex.org/W2793002108, https://openalex.org/W2884367402, https://openalex.org/W2999653953, https://openalex.org/W2924872296 |
| referenced_works_count | 6 |
| abstract_inverted_index.a | 70 |
| abstract_inverted_index.In | 60 |
| abstract_inverted_index.It | 34, 196 |
| abstract_inverted_index.an | 13, 39 |
| abstract_inverted_index.be | 203 |
| abstract_inverted_index.by | 31 |
| abstract_inverted_index.in | 8, 16, 213 |
| abstract_inverted_index.is | 35, 54, 197 |
| abstract_inverted_index.of | 4, 19, 57, 73, 115, 123, 145, 165, 210 |
| abstract_inverted_index.on | 77, 156 |
| abstract_inverted_index.to | 37, 44, 96, 109, 129, 134, 139, 161, 205 |
| abstract_inverted_index.we | 63 |
| abstract_inverted_index.The | 0, 168 |
| abstract_inverted_index.and | 2, 50, 68, 80, 101, 125, 150, 187 |
| abstract_inverted_index.are | 28 |
| abstract_inverted_index.had | 183 |
| abstract_inverted_index.out | 155 |
| abstract_inverted_index.the | 17, 55, 65, 86, 93, 102, 111, 116, 119, 131, 135, 141, 163, 166, 177, 188, 200, 206, 214 |
| abstract_inverted_index.was | 90, 107, 127 |
| abstract_inverted_index.Then | 118 |
| abstract_inverted_index.data | 159 |
| abstract_inverted_index.dual | 78, 87 |
| abstract_inverted_index.into | 92 |
| abstract_inverted_index.mIoU | 189 |
| abstract_inverted_index.many | 32 |
| abstract_inverted_index.more | 193 |
| abstract_inverted_index.path | 79, 88 |
| abstract_inverted_index.play | 12 |
| abstract_inverted_index.role | 15 |
| abstract_inverted_index.sets | 160 |
| abstract_inverted_index.size | 138 |
| abstract_inverted_index.test | 26 |
| abstract_inverted_index.than | 194 |
| abstract_inverted_index.that | 171, 199 |
| abstract_inverted_index.this | 61 |
| abstract_inverted_index.used | 108, 128 |
| abstract_inverted_index.were | 153 |
| abstract_inverted_index.with | 47, 173 |
| abstract_inverted_index.0.97. | 195 |
| abstract_inverted_index.U-Net | 66 |
| abstract_inverted_index.based | 76 |
| abstract_inverted_index.basis | 56 |
| abstract_inverted_index.blood | 6, 9, 20, 51, 146, 179, 211 |
| abstract_inverted_index.cells | 7 |
| abstract_inverted_index.could | 191, 202 |
| abstract_inverted_index.count | 1 |
| abstract_inverted_index.hoped | 198 |
| abstract_inverted_index.image | 75, 137 |
| abstract_inverted_index.level | 143 |
| abstract_inverted_index.model | 67 |
| abstract_inverted_index.other | 174 |
| abstract_inverted_index.pixel | 142 |
| abstract_inverted_index.reach | 192 |
| abstract_inverted_index.smear | 10 |
| abstract_inverted_index.three | 157 |
| abstract_inverted_index.value | 190 |
| abstract_inverted_index.white | 5 |
| abstract_inverted_index.atrous | 81, 103 |
| abstract_inverted_index.better | 184 |
| abstract_inverted_index.easily | 29 |
| abstract_inverted_index.images | 11 |
| abstract_inverted_index.manual | 25 |
| abstract_inverted_index.method | 201 |
| abstract_inverted_index.paper, | 62 |
| abstract_inverted_index.showed | 170 |
| abstract_inverted_index.system | 43 |
| abstract_inverted_index.target | 133 |
| abstract_inverted_index.verify | 162 |
| abstract_inverted_index.ability | 114 |
| abstract_inverted_index.carried | 154 |
| abstract_inverted_index.decoder | 121 |
| abstract_inverted_index.develop | 38 |
| abstract_inverted_index.doctors | 46 |
| abstract_inverted_index.encoder | 95 |
| abstract_inverted_index.enhance | 110 |
| abstract_inverted_index.extract | 97 |
| abstract_inverted_index.feature | 94, 112, 120 |
| abstract_inverted_index.future. | 215 |
| abstract_inverted_index.network | 89 |
| abstract_inverted_index.pooling | 106 |
| abstract_inverted_index.provide | 45 |
| abstract_inverted_index.pyramid | 83, 105 |
| abstract_inverted_index.realize | 140 |
| abstract_inverted_index.restore | 130 |
| abstract_inverted_index.results | 27, 169 |
| abstract_inverted_index.spatial | 82, 104 |
| abstract_inverted_index.Finally, | 148 |
| abstract_inverted_index.Firstly, | 85 |
| abstract_inverted_index.analysis | 42 |
| abstract_inverted_index.compared | 172 |
| abstract_inverted_index.composed | 122 |
| abstract_inverted_index.diseases | 21, 212 |
| abstract_inverted_index.factors. | 33 |
| abstract_inverted_index.improved | 64 |
| abstract_inverted_index.network. | 117 |
| abstract_inverted_index.original | 136 |
| abstract_inverted_index.pooling. | 84 |
| abstract_inverted_index.proposed | 69, 178 |
| abstract_inverted_index.results, | 186 |
| abstract_inverted_index.algorithm | 72, 182 |
| abstract_inverted_index.analysis. | 59 |
| abstract_inverted_index.automatic | 40, 58, 207 |
| abstract_inverted_index.auxiliary | 48, 208 |
| abstract_inverted_index.conducive | 204 |
| abstract_inverted_index.diagnosis | 18, 209 |
| abstract_inverted_index.disturbed | 30 |
| abstract_inverted_index.features, | 100 |
| abstract_inverted_index.important | 14 |
| abstract_inverted_index.including | 22 |
| abstract_inverted_index.leukemia. | 23 |
| abstract_inverted_index.leukocyte | 41, 52, 74, 99, 158, 180 |
| abstract_inverted_index.necessary | 36 |
| abstract_inverted_index.segmented | 132 |
| abstract_inverted_index.algorithm. | 167 |
| abstract_inverted_index.diagnosis, | 49 |
| abstract_inverted_index.extraction | 113 |
| abstract_inverted_index.introduced | 91 |
| abstract_inverted_index.Traditional | 24 |
| abstract_inverted_index.algorithms, | 176 |
| abstract_inverted_index.convolution | 124 |
| abstract_inverted_index.experiments | 152 |
| abstract_inverted_index.leukocytes. | 147 |
| abstract_inverted_index.multi-scale | 98 |
| abstract_inverted_index.qualitative | 149 |
| abstract_inverted_index.recognition | 3 |
| abstract_inverted_index.quantitative | 151 |
| abstract_inverted_index.segmentation | 53, 71, 144, 181, 185 |
| abstract_inverted_index.deconvolution | 126 |
| abstract_inverted_index.effectiveness | 164 |
| abstract_inverted_index.representative | 175 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.48795392 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |