Why Solving Multi-agent Path Finding with Large Language Model has not Succeeded Yet Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.03630
With the explosive influence caused by the success of large language models (LLM) like ChatGPT and GPT-4, there has been an extensive amount of recent work showing that foundation models can be used to solve a large variety of tasks. However, there is very limited work that shares insights on multi-agent planning. Multi-agent planning is different from other domains by combining the difficulty of multi-agent coordination and planning, and making it hard to leverage external tools to facilitate the reasoning needed. In this paper, we focus on the problem of multi-agent path finding (MAPF), which is also known as multi-robot route planning, and study the performance of solving MAPF with LLMs. We first show the motivating success on an empty room map without obstacles, then the failure to plan on the harder room map and maze map of the standard MAPF benchmark. We present our position on why directly solving MAPF with LLMs has not been successful yet, and we use various experiments to support our hypothesis. Based on our results, we discussed how researchers with different backgrounds could help with this problem from different perspectives.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2401.03630
- https://arxiv.org/pdf/2401.03630
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390723614
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390723614Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.03630Digital Object Identifier
- Title
-
Why Solving Multi-agent Path Finding with Large Language Model has not Succeeded YetWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-08Full publication date if available
- Authors
-
Weizhe Chen, Sven Koenig, Bistra DilkinaList of authors in order
- Landing page
-
https://arxiv.org/abs/2401.03630Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2401.03630Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.03630Direct OA link when available
- Concepts
-
Leverage (statistics), Benchmark (surveying), Computer science, Plan (archaeology), Motion planning, Path (computing), Variety (cybernetics), Artificial intelligence, Work (physics), Robot, Operations research, Management science, Engineering, Programming language, Mechanical engineering, Archaeology, History, Geodesy, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390723614 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.03630 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.03630 |
| ids.openalex | https://openalex.org/W4390723614 |
| fwci | |
| type | preprint |
| title | Why Solving Multi-agent Path Finding with Large Language Model has not Succeeded Yet |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9912999868392944 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T10586 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9787999987602234 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Robotic Path Planning Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C153083717 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7561378479003906 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[0].display_name | Leverage (statistics) |
| concepts[1].id | https://openalex.org/C185798385 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6451554894447327 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[1].display_name | Benchmark (surveying) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6129910945892334 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2776505523 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5490208864212036 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4785468 |
| concepts[3].display_name | Plan (archaeology) |
| concepts[4].id | https://openalex.org/C81074085 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5068040490150452 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q366872 |
| concepts[4].display_name | Motion planning |
| concepts[5].id | https://openalex.org/C2777735758 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4698920249938965 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q817765 |
| concepts[5].display_name | Path (computing) |
| concepts[6].id | https://openalex.org/C136197465 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4414916932582855 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[6].display_name | Variety (cybernetics) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4302109479904175 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C18762648 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4208647906780243 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q42213 |
| concepts[8].display_name | Work (physics) |
| concepts[9].id | https://openalex.org/C90509273 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3747214078903198 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[9].display_name | Robot |
| concepts[10].id | https://openalex.org/C42475967 |
| concepts[10].level | 1 |
| concepts[10].score | 0.33352482318878174 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[10].display_name | Operations research |
| concepts[11].id | https://openalex.org/C539667460 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3221758008003235 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2414942 |
| concepts[11].display_name | Management science |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.14636793732643127 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.08628454804420471 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C78519656 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[14].display_name | Mechanical engineering |
| concepts[15].id | https://openalex.org/C166957645 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[15].display_name | Archaeology |
| concepts[16].id | https://openalex.org/C95457728 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q309 |
| concepts[16].display_name | History |
| concepts[17].id | https://openalex.org/C13280743 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[17].display_name | Geodesy |
| concepts[18].id | https://openalex.org/C205649164 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[18].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/leverage |
| keywords[0].score | 0.7561378479003906 |
| keywords[0].display_name | Leverage (statistics) |
| keywords[1].id | https://openalex.org/keywords/benchmark |
| keywords[1].score | 0.6451554894447327 |
| keywords[1].display_name | Benchmark (surveying) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6129910945892334 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/plan |
| keywords[3].score | 0.5490208864212036 |
| keywords[3].display_name | Plan (archaeology) |
| keywords[4].id | https://openalex.org/keywords/motion-planning |
| keywords[4].score | 0.5068040490150452 |
| keywords[4].display_name | Motion planning |
| keywords[5].id | https://openalex.org/keywords/path |
| keywords[5].score | 0.4698920249938965 |
| keywords[5].display_name | Path (computing) |
| keywords[6].id | https://openalex.org/keywords/variety |
| keywords[6].score | 0.4414916932582855 |
| keywords[6].display_name | Variety (cybernetics) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4302109479904175 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/work |
| keywords[8].score | 0.4208647906780243 |
| keywords[8].display_name | Work (physics) |
| keywords[9].id | https://openalex.org/keywords/robot |
| keywords[9].score | 0.3747214078903198 |
| keywords[9].display_name | Robot |
| keywords[10].id | https://openalex.org/keywords/operations-research |
| keywords[10].score | 0.33352482318878174 |
| keywords[10].display_name | Operations research |
| keywords[11].id | https://openalex.org/keywords/management-science |
| keywords[11].score | 0.3221758008003235 |
| keywords[11].display_name | Management science |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.14636793732643127 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/programming-language |
| keywords[13].score | 0.08628454804420471 |
| keywords[13].display_name | Programming language |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2401.03630 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2401.03630 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2401.03630 |
| locations[1].id | doi:10.48550/arxiv.2401.03630 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2401.03630 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103236436 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9068-4247 |
| authorships[0].author.display_name | Weizhe Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chen, Weizhe |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5026549557 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5458-094X |
| authorships[1].author.display_name | Sven Koenig |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Koenig, Sven |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5087538704 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6784-473X |
| authorships[2].author.display_name | Bistra Dilkina |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Dilkina, Bistra |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.03630 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-01-13T00:00:00 |
| display_name | Why Solving Multi-agent Path Finding with Large Language Model has not Succeeded Yet |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W2378211422, https://openalex.org/W2745001401, https://openalex.org/W2359600231, https://openalex.org/W2380019117, https://openalex.org/W3138952546, https://openalex.org/W1987886368, https://openalex.org/W1660309994, https://openalex.org/W2369187583, https://openalex.org/W3197207153, https://openalex.org/W3154539612 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.03630 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.03630 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.03630 |
| primary_location.id | pmh:oai:arXiv.org:2401.03630 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2401.03630 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2401.03630 |
| publication_date | 2024-01-08 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 35 |
| abstract_inverted_index.In | 81 |
| abstract_inverted_index.We | 111, 142 |
| abstract_inverted_index.an | 20, 118 |
| abstract_inverted_index.as | 98 |
| abstract_inverted_index.be | 31 |
| abstract_inverted_index.by | 5, 59 |
| abstract_inverted_index.is | 42, 54, 95 |
| abstract_inverted_index.it | 70 |
| abstract_inverted_index.of | 8, 23, 38, 63, 89, 106, 137 |
| abstract_inverted_index.on | 49, 86, 117, 129, 146, 168 |
| abstract_inverted_index.to | 33, 72, 76, 127, 163 |
| abstract_inverted_index.we | 84, 159, 171 |
| abstract_inverted_index.and | 15, 66, 68, 102, 134, 158 |
| abstract_inverted_index.can | 30 |
| abstract_inverted_index.has | 18, 153 |
| abstract_inverted_index.how | 173 |
| abstract_inverted_index.map | 121, 133, 136 |
| abstract_inverted_index.not | 154 |
| abstract_inverted_index.our | 144, 165, 169 |
| abstract_inverted_index.the | 1, 6, 61, 78, 87, 104, 114, 125, 130, 138 |
| abstract_inverted_index.use | 160 |
| abstract_inverted_index.why | 147 |
| abstract_inverted_index.LLMs | 152 |
| abstract_inverted_index.MAPF | 108, 140, 150 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.also | 96 |
| abstract_inverted_index.been | 19, 155 |
| abstract_inverted_index.from | 56, 183 |
| abstract_inverted_index.hard | 71 |
| abstract_inverted_index.help | 179 |
| abstract_inverted_index.like | 13 |
| abstract_inverted_index.maze | 135 |
| abstract_inverted_index.path | 91 |
| abstract_inverted_index.plan | 128 |
| abstract_inverted_index.room | 120, 132 |
| abstract_inverted_index.show | 113 |
| abstract_inverted_index.that | 27, 46 |
| abstract_inverted_index.then | 124 |
| abstract_inverted_index.this | 82, 181 |
| abstract_inverted_index.used | 32 |
| abstract_inverted_index.very | 43 |
| abstract_inverted_index.with | 109, 151, 175, 180 |
| abstract_inverted_index.work | 25, 45 |
| abstract_inverted_index.yet, | 157 |
| abstract_inverted_index.(LLM) | 12 |
| abstract_inverted_index.Based | 167 |
| abstract_inverted_index.LLMs. | 110 |
| abstract_inverted_index.could | 178 |
| abstract_inverted_index.empty | 119 |
| abstract_inverted_index.first | 112 |
| abstract_inverted_index.focus | 85 |
| abstract_inverted_index.known | 97 |
| abstract_inverted_index.large | 9, 36 |
| abstract_inverted_index.other | 57 |
| abstract_inverted_index.route | 100 |
| abstract_inverted_index.solve | 34 |
| abstract_inverted_index.study | 103 |
| abstract_inverted_index.there | 17, 41 |
| abstract_inverted_index.tools | 75 |
| abstract_inverted_index.which | 94 |
| abstract_inverted_index.GPT-4, | 16 |
| abstract_inverted_index.amount | 22 |
| abstract_inverted_index.caused | 4 |
| abstract_inverted_index.harder | 131 |
| abstract_inverted_index.making | 69 |
| abstract_inverted_index.models | 11, 29 |
| abstract_inverted_index.paper, | 83 |
| abstract_inverted_index.recent | 24 |
| abstract_inverted_index.shares | 47 |
| abstract_inverted_index.tasks. | 39 |
| abstract_inverted_index.(MAPF), | 93 |
| abstract_inverted_index.ChatGPT | 14 |
| abstract_inverted_index.domains | 58 |
| abstract_inverted_index.failure | 126 |
| abstract_inverted_index.finding | 92 |
| abstract_inverted_index.limited | 44 |
| abstract_inverted_index.needed. | 80 |
| abstract_inverted_index.present | 143 |
| abstract_inverted_index.problem | 88, 182 |
| abstract_inverted_index.showing | 26 |
| abstract_inverted_index.solving | 107, 149 |
| abstract_inverted_index.success | 7, 116 |
| abstract_inverted_index.support | 164 |
| abstract_inverted_index.variety | 37 |
| abstract_inverted_index.various | 161 |
| abstract_inverted_index.without | 122 |
| abstract_inverted_index.However, | 40 |
| abstract_inverted_index.directly | 148 |
| abstract_inverted_index.external | 74 |
| abstract_inverted_index.insights | 48 |
| abstract_inverted_index.language | 10 |
| abstract_inverted_index.leverage | 73 |
| abstract_inverted_index.planning | 53 |
| abstract_inverted_index.position | 145 |
| abstract_inverted_index.results, | 170 |
| abstract_inverted_index.standard | 139 |
| abstract_inverted_index.combining | 60 |
| abstract_inverted_index.different | 55, 176, 184 |
| abstract_inverted_index.discussed | 172 |
| abstract_inverted_index.explosive | 2 |
| abstract_inverted_index.extensive | 21 |
| abstract_inverted_index.influence | 3 |
| abstract_inverted_index.planning, | 67, 101 |
| abstract_inverted_index.planning. | 51 |
| abstract_inverted_index.reasoning | 79 |
| abstract_inverted_index.benchmark. | 141 |
| abstract_inverted_index.difficulty | 62 |
| abstract_inverted_index.facilitate | 77 |
| abstract_inverted_index.foundation | 28 |
| abstract_inverted_index.motivating | 115 |
| abstract_inverted_index.obstacles, | 123 |
| abstract_inverted_index.successful | 156 |
| abstract_inverted_index.Multi-agent | 52 |
| abstract_inverted_index.backgrounds | 177 |
| abstract_inverted_index.experiments | 162 |
| abstract_inverted_index.hypothesis. | 166 |
| abstract_inverted_index.multi-agent | 50, 64, 90 |
| abstract_inverted_index.multi-robot | 99 |
| abstract_inverted_index.performance | 105 |
| abstract_inverted_index.researchers | 174 |
| abstract_inverted_index.coordination | 65 |
| abstract_inverted_index.perspectives. | 185 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile |