Why Use Automated Machine Learning? Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1093/oso/9780190941659.003.0001
Machine learning is involved in search, translation, detecting depression, likelihood of college dropout, finding lost children, and to sell all kinds of products. While barely beyond its inception, the current machine learning revolution will affect people and organizations no less than the Industrial Revolution’s effect on weavers and many other skilled laborers. Machine learning will automate hundreds of millions of jobs that were considered too complex for machines ever to take over even a decade ago, including driving, flying, painting, programming, and customer service, as well as many of the jobs previously reserved for humans in the fields of finance, marketing, operations, accounting, and human resources. This section explains how automated machine learning addresses exploratory data analysis, feature engineering, algorithm selection, hyperparameter tuning, and model diagnostics. The section covers the eight criteria considered essential for AutoML to have significant impact: accuracy, productivity, ease of use, understanding and learning, resource availability, process transparency, generalization, and recommended actions.
Related Topics
- Type
- book-chapter
- Language
- en
- Landing Page
- https://doi.org/10.1093/oso/9780190941659.003.0001
- https://academic.oup.com/book/40037/chapter/340418906/chapter-pdf/42890329/oso-9780190941659-chapter-1.pdf
- OA Status
- bronze
- Cited By
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4206103717
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4206103717Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/oso/9780190941659.003.0001Digital Object Identifier
- Title
-
Why Use Automated Machine Learning?Work title
- Type
-
book-chapterOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-07-21Full publication date if available
- Authors
-
Kai R. Larsen, Daniel S. BeckerList of authors in order
- Landing page
-
https://doi.org/10.1093/oso/9780190941659.003.0001Publisher landing page
- PDF URL
-
https://academic.oup.com/book/40037/chapter/340418906/chapter-pdf/42890329/oso-9780190941659-chapter-1.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/book/40037/chapter/340418906/chapter-pdf/42890329/oso-9780190941659-chapter-1.pdfDirect OA link when available
- Concepts
-
Machine learning, Artificial intelligence, Computer science, Feature engineering, Feature selection, Deep learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 4, 2022: 3, 2021: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4206103717 |
|---|---|
| doi | https://doi.org/10.1093/oso/9780190941659.003.0001 |
| ids.doi | https://doi.org/10.1093/oso/9780190941659.003.0001 |
| ids.openalex | https://openalex.org/W4206103717 |
| fwci | 5.17747337 |
| type | book-chapter |
| title | Why Use Automated Machine Learning? |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 22 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11891 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.9187999963760376 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1404 |
| topics[0].subfield.display_name | Management Information Systems |
| topics[0].display_name | Big Data and Business Intelligence |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C119857082 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7866297364234924 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[0].display_name | Machine learning |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7382964491844177 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5676068067550659 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2778827112 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5555645227432251 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q22245680 |
| concepts[3].display_name | Feature engineering |
| concepts[4].id | https://openalex.org/C148483581 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4318609833717346 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[4].display_name | Feature selection |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.19822904467582703 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| keywords[0].id | https://openalex.org/keywords/machine-learning |
| keywords[0].score | 0.7866297364234924 |
| keywords[0].display_name | Machine learning |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7382964491844177 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5676068067550659 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/feature-engineering |
| keywords[3].score | 0.5555645227432251 |
| keywords[3].display_name | Feature engineering |
| keywords[4].id | https://openalex.org/keywords/feature-selection |
| keywords[4].score | 0.4318609833717346 |
| keywords[4].display_name | Feature selection |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.19822904467582703 |
| keywords[5].display_name | Deep learning |
| language | en |
| locations[0].id | doi:10.1093/oso/9780190941659.003.0001 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306463708 |
| locations[0].source.issn | |
| locations[0].source.type | ebook platform |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Oxford University Press eBooks |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | https://academic.oup.com/book/40037/chapter/340418906/chapter-pdf/42890329/oso-9780190941659-chapter-1.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Automated Machine Learning for Business |
| locations[0].landing_page_url | https://doi.org/10.1093/oso/9780190941659.003.0001 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5075496480 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8812-9866 |
| authorships[0].author.display_name | Kai R. Larsen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kai R. Larsen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5035707838 |
| authorships[1].author.orcid | https://orcid.org/0009-0006-3247-9222 |
| authorships[1].author.display_name | Daniel S. Becker |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Daniel S. Becker |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/book/40037/chapter/340418906/chapter-pdf/42890329/oso-9780190941659-chapter-1.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Why Use Automated Machine Learning? |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11891 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.9187999963760376 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1404 |
| primary_topic.subfield.display_name | Management Information Systems |
| primary_topic.display_name | Big Data and Business Intelligence |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3209574120, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1093/oso/9780190941659.003.0001 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306463708 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | ebook platform |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Oxford University Press eBooks |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://academic.oup.com/book/40037/chapter/340418906/chapter-pdf/42890329/oso-9780190941659-chapter-1.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | book-chapter |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Automated Machine Learning for Business |
| best_oa_location.landing_page_url | https://doi.org/10.1093/oso/9780190941659.003.0001 |
| primary_location.id | doi:10.1093/oso/9780190941659.003.0001 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306463708 |
| primary_location.source.issn | |
| primary_location.source.type | ebook platform |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Oxford University Press eBooks |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | https://academic.oup.com/book/40037/chapter/340418906/chapter-pdf/42890329/oso-9780190941659-chapter-1.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Automated Machine Learning for Business |
| primary_location.landing_page_url | https://doi.org/10.1093/oso/9780190941659.003.0001 |
| publication_date | 2021-07-21 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 73 |
| abstract_inverted_index.as | 84, 86 |
| abstract_inverted_index.in | 4, 95 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.no | 38 |
| abstract_inverted_index.of | 10, 21, 57, 59, 88, 98, 143 |
| abstract_inverted_index.on | 45 |
| abstract_inverted_index.to | 17, 69, 136 |
| abstract_inverted_index.The | 126 |
| abstract_inverted_index.all | 19 |
| abstract_inverted_index.and | 16, 36, 47, 81, 103, 123, 146, 153 |
| abstract_inverted_index.for | 66, 93, 134 |
| abstract_inverted_index.how | 109 |
| abstract_inverted_index.its | 26 |
| abstract_inverted_index.the | 28, 41, 89, 96, 129 |
| abstract_inverted_index.too | 64 |
| abstract_inverted_index.This | 106 |
| abstract_inverted_index.ago, | 75 |
| abstract_inverted_index.data | 115 |
| abstract_inverted_index.ease | 142 |
| abstract_inverted_index.even | 72 |
| abstract_inverted_index.ever | 68 |
| abstract_inverted_index.have | 137 |
| abstract_inverted_index.jobs | 60, 90 |
| abstract_inverted_index.less | 39 |
| abstract_inverted_index.lost | 14 |
| abstract_inverted_index.many | 48, 87 |
| abstract_inverted_index.over | 71 |
| abstract_inverted_index.sell | 18 |
| abstract_inverted_index.take | 70 |
| abstract_inverted_index.than | 40 |
| abstract_inverted_index.that | 61 |
| abstract_inverted_index.use, | 144 |
| abstract_inverted_index.well | 85 |
| abstract_inverted_index.were | 62 |
| abstract_inverted_index.will | 33, 54 |
| abstract_inverted_index.While | 23 |
| abstract_inverted_index.eight | 130 |
| abstract_inverted_index.human | 104 |
| abstract_inverted_index.kinds | 20 |
| abstract_inverted_index.model | 124 |
| abstract_inverted_index.other | 49 |
| abstract_inverted_index.AutoML | 135 |
| abstract_inverted_index.affect | 34 |
| abstract_inverted_index.barely | 24 |
| abstract_inverted_index.beyond | 25 |
| abstract_inverted_index.covers | 128 |
| abstract_inverted_index.decade | 74 |
| abstract_inverted_index.effect | 44 |
| abstract_inverted_index.fields | 97 |
| abstract_inverted_index.humans | 94 |
| abstract_inverted_index.people | 35 |
| abstract_inverted_index.Machine | 0, 52 |
| abstract_inverted_index.college | 11 |
| abstract_inverted_index.complex | 65 |
| abstract_inverted_index.current | 29 |
| abstract_inverted_index.feature | 117 |
| abstract_inverted_index.finding | 13 |
| abstract_inverted_index.flying, | 78 |
| abstract_inverted_index.impact: | 139 |
| abstract_inverted_index.machine | 30, 111 |
| abstract_inverted_index.process | 150 |
| abstract_inverted_index.search, | 5 |
| abstract_inverted_index.section | 107, 127 |
| abstract_inverted_index.skilled | 50 |
| abstract_inverted_index.tuning, | 122 |
| abstract_inverted_index.weavers | 46 |
| abstract_inverted_index.automate | 55 |
| abstract_inverted_index.criteria | 131 |
| abstract_inverted_index.customer | 82 |
| abstract_inverted_index.driving, | 77 |
| abstract_inverted_index.dropout, | 12 |
| abstract_inverted_index.explains | 108 |
| abstract_inverted_index.finance, | 99 |
| abstract_inverted_index.hundreds | 56 |
| abstract_inverted_index.involved | 3 |
| abstract_inverted_index.learning | 1, 31, 53, 112 |
| abstract_inverted_index.machines | 67 |
| abstract_inverted_index.millions | 58 |
| abstract_inverted_index.reserved | 92 |
| abstract_inverted_index.resource | 148 |
| abstract_inverted_index.service, | 83 |
| abstract_inverted_index.addresses | 113 |
| abstract_inverted_index.algorithm | 119 |
| abstract_inverted_index.analysis, | 116 |
| abstract_inverted_index.automated | 110 |
| abstract_inverted_index.children, | 15 |
| abstract_inverted_index.detecting | 7 |
| abstract_inverted_index.essential | 133 |
| abstract_inverted_index.including | 76 |
| abstract_inverted_index.laborers. | 51 |
| abstract_inverted_index.learning, | 147 |
| abstract_inverted_index.painting, | 79 |
| abstract_inverted_index.products. | 22 |
| abstract_inverted_index.Industrial | 42 |
| abstract_inverted_index.considered | 63, 132 |
| abstract_inverted_index.inception, | 27 |
| abstract_inverted_index.likelihood | 9 |
| abstract_inverted_index.marketing, | 100 |
| abstract_inverted_index.previously | 91 |
| abstract_inverted_index.resources. | 105 |
| abstract_inverted_index.revolution | 32 |
| abstract_inverted_index.selection, | 120 |
| abstract_inverted_index.accounting, | 102 |
| abstract_inverted_index.depression, | 8 |
| abstract_inverted_index.exploratory | 114 |
| abstract_inverted_index.operations, | 101 |
| abstract_inverted_index.significant | 138 |
| abstract_inverted_index.diagnostics. | 125 |
| abstract_inverted_index.engineering, | 118 |
| abstract_inverted_index.programming, | 80 |
| abstract_inverted_index.translation, | 6 |
| abstract_inverted_index.availability, | 149 |
| abstract_inverted_index.organizations | 37 |
| abstract_inverted_index.productivity, | 141 |
| abstract_inverted_index.transparency, | 151 |
| abstract_inverted_index.understanding | 145 |
| abstract_inverted_index.Revolution’s | 43 |
| abstract_inverted_index.hyperparameter | 121 |
| abstract_inverted_index.<italic>accuracy, | 140 |
| abstract_inverted_index.actions.</italic> | 155 |
| abstract_inverted_index.<italic>recommended | 154 |
| abstract_inverted_index.generalization</italic>, | 152 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.96448468 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |