Wind and photovoltaic power prediction using a combined VMD-CNN-BiLSTM model Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1088/1742-6596/3084/1/012076
The swift advancement of renewable energy necessitates precise forecasting of wind and photovoltaic power to ensure grid stability and effective energy management. Nonetheless, the data associated with wind and solar power is characterized by non-stationarity, noise interference, and complex temporal dynamics, which hinder the effectiveness of conventional forecasting techniques. To enhance prediction accuracy, this study integrates the effectiveness signal decomposition and denoising capabilities of Variational Mode Decomposition (VMD), the robust feature extraction potential of Convolutional Neural Networks (CNN), and the strong temporal memory capacity of Bidirectional Long Short-Term Memory networks (BiLSTM) to develop a high-accuracy combined VMD-CNN-BiLSTM forecasting model for wind and solar energy.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1742-6596/3084/1/012076
- OA Status
- diamond
- References
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413662454
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413662454Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1742-6596/3084/1/012076Digital Object Identifier
- Title
-
Wind and photovoltaic power prediction using a combined VMD-CNN-BiLSTM modelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-01Full publication date if available
- Authors
-
Junming Cao, Fei Tang, Luo Ji, Mengxi Li, Ke Duan, Qi SunList of authors in order
- Landing page
-
https://doi.org/10.1088/1742-6596/3084/1/012076Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1742-6596/3084/1/012076Direct OA link when available
- Concepts
-
Photovoltaic system, Power (physics), Wind power, Computer science, Environmental science, Engineering, Electrical engineering, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
8Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413662454 |
|---|---|
| doi | https://doi.org/10.1088/1742-6596/3084/1/012076 |
| ids.doi | https://doi.org/10.1088/1742-6596/3084/1/012076 |
| ids.openalex | https://openalex.org/W4413662454 |
| fwci | 0.0 |
| type | article |
| title | Wind and photovoltaic power prediction using a combined VMD-CNN-BiLSTM model |
| biblio.issue | 1 |
| biblio.volume | 3084 |
| biblio.last_page | 012076 |
| biblio.first_page | 012076 |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T11276 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9955000281333923 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Solar Radiation and Photovoltaics |
| topics[2].id | https://openalex.org/T12451 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9812999963760376 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Smart Grid and Power Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41291067 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7989197969436646 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1897785 |
| concepts[0].display_name | Photovoltaic system |
| concepts[1].id | https://openalex.org/C163258240 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4670162796974182 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[1].display_name | Power (physics) |
| concepts[2].id | https://openalex.org/C78600449 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4597703218460083 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q43302 |
| concepts[2].display_name | Wind power |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4381472170352936 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C39432304 |
| concepts[4].level | 0 |
| concepts[4].score | 0.41077545285224915 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[4].display_name | Environmental science |
| concepts[5].id | https://openalex.org/C127413603 |
| concepts[5].level | 0 |
| concepts[5].score | 0.24370360374450684 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[5].display_name | Engineering |
| concepts[6].id | https://openalex.org/C119599485 |
| concepts[6].level | 1 |
| concepts[6].score | 0.22428616881370544 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[6].display_name | Electrical engineering |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.11357623338699341 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C62520636 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[8].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/photovoltaic-system |
| keywords[0].score | 0.7989197969436646 |
| keywords[0].display_name | Photovoltaic system |
| keywords[1].id | https://openalex.org/keywords/power |
| keywords[1].score | 0.4670162796974182 |
| keywords[1].display_name | Power (physics) |
| keywords[2].id | https://openalex.org/keywords/wind-power |
| keywords[2].score | 0.4597703218460083 |
| keywords[2].display_name | Wind power |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4381472170352936 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/environmental-science |
| keywords[4].score | 0.41077545285224915 |
| keywords[4].display_name | Environmental science |
| keywords[5].id | https://openalex.org/keywords/engineering |
| keywords[5].score | 0.24370360374450684 |
| keywords[5].display_name | Engineering |
| keywords[6].id | https://openalex.org/keywords/electrical-engineering |
| keywords[6].score | 0.22428616881370544 |
| keywords[6].display_name | Electrical engineering |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.11357623338699341 |
| keywords[7].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1088/1742-6596/3084/1/012076 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210187594 |
| locations[0].source.issn | 1742-6588, 1742-6596 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1742-6588 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Physics Conference Series |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Physics: Conference Series |
| locations[0].landing_page_url | https://doi.org/10.1088/1742-6596/3084/1/012076 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5042239685 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9347-160X |
| authorships[0].author.display_name | Junming Cao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Junming Cao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5076318988 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4668-4113 |
| authorships[1].author.display_name | Fei Tang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fei Tang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101195654 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Luo Ji |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ji Luo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101894007 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9427-2928 |
| authorships[3].author.display_name | Mengxi Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mengxi Li |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5103104450 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8665-0957 |
| authorships[4].author.display_name | Ke Duan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ke Duan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5034140386 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7092-0705 |
| authorships[5].author.display_name | Qi Sun |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Qi Sun |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1742-6596/3084/1/012076 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Wind and photovoltaic power prediction using a combined VMD-CNN-BiLSTM model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W2386968573, https://openalex.org/W2395064349, https://openalex.org/W4396701345, https://openalex.org/W2376932109 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1742-6596/3084/1/012076 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210187594 |
| best_oa_location.source.issn | 1742-6588, 1742-6596 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1742-6588 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Physics Conference Series |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Physics: Conference Series |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1742-6596/3084/1/012076 |
| primary_location.id | doi:10.1088/1742-6596/3084/1/012076 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210187594 |
| primary_location.source.issn | 1742-6588, 1742-6596 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1742-6588 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Physics Conference Series |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Physics: Conference Series |
| primary_location.landing_page_url | https://doi.org/10.1088/1742-6596/3084/1/012076 |
| publication_date | 2025-08-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4324081389, https://openalex.org/W4404851540, https://openalex.org/W2893815961, https://openalex.org/W2345862676, https://openalex.org/W4393123738, https://openalex.org/W4210858069, https://openalex.org/W4408181301, https://openalex.org/W3006461785 |
| referenced_works_count | 8 |
| abstract_inverted_index.a | 94 |
| abstract_inverted_index.To | 50 |
| abstract_inverted_index.by | 34 |
| abstract_inverted_index.is | 32 |
| abstract_inverted_index.of | 4, 10, 46, 64, 74, 85 |
| abstract_inverted_index.to | 15, 92 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.and | 12, 19, 29, 38, 61, 79, 102 |
| abstract_inverted_index.for | 100 |
| abstract_inverted_index.the | 24, 44, 57, 69, 80 |
| abstract_inverted_index.Long | 87 |
| abstract_inverted_index.Mode | 66 |
| abstract_inverted_index.data | 25 |
| abstract_inverted_index.grid | 17 |
| abstract_inverted_index.this | 54 |
| abstract_inverted_index.wind | 11, 28, 101 |
| abstract_inverted_index.with | 27 |
| abstract_inverted_index.model | 99 |
| abstract_inverted_index.noise | 36 |
| abstract_inverted_index.power | 14, 31 |
| abstract_inverted_index.solar | 30, 103 |
| abstract_inverted_index.study | 55 |
| abstract_inverted_index.swift | 2 |
| abstract_inverted_index.which | 42 |
| abstract_inverted_index.(CNN), | 78 |
| abstract_inverted_index.(VMD), | 68 |
| abstract_inverted_index.Memory | 89 |
| abstract_inverted_index.Neural | 76 |
| abstract_inverted_index.energy | 6, 21 |
| abstract_inverted_index.ensure | 16 |
| abstract_inverted_index.hinder | 43 |
| abstract_inverted_index.memory | 83 |
| abstract_inverted_index.robust | 70 |
| abstract_inverted_index.signal | 59 |
| abstract_inverted_index.strong | 81 |
| abstract_inverted_index.complex | 39 |
| abstract_inverted_index.develop | 93 |
| abstract_inverted_index.energy. | 104 |
| abstract_inverted_index.enhance | 51 |
| abstract_inverted_index.feature | 71 |
| abstract_inverted_index.precise | 8 |
| abstract_inverted_index.(BiLSTM) | 91 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Networks | 77 |
| abstract_inverted_index.capacity | 84 |
| abstract_inverted_index.combined | 96 |
| abstract_inverted_index.networks | 90 |
| abstract_inverted_index.temporal | 40, 82 |
| abstract_inverted_index.accuracy, | 53 |
| abstract_inverted_index.denoising | 62 |
| abstract_inverted_index.dynamics, | 41 |
| abstract_inverted_index.effective | 20 |
| abstract_inverted_index.potential | 73 |
| abstract_inverted_index.renewable | 5 |
| abstract_inverted_index.stability | 18 |
| abstract_inverted_index.Short-Term | 88 |
| abstract_inverted_index.associated | 26 |
| abstract_inverted_index.extraction | 72 |
| abstract_inverted_index.integrates | 56 |
| abstract_inverted_index.prediction | 52 |
| abstract_inverted_index.Variational | 65 |
| abstract_inverted_index.advancement | 3 |
| abstract_inverted_index.forecasting | 9, 48, 98 |
| abstract_inverted_index.management. | 22 |
| abstract_inverted_index.techniques. | 49 |
| abstract_inverted_index.Nonetheless, | 23 |
| abstract_inverted_index.capabilities | 63 |
| abstract_inverted_index.conventional | 47 |
| abstract_inverted_index.necessitates | 7 |
| abstract_inverted_index.photovoltaic | 13 |
| abstract_inverted_index.Bidirectional | 86 |
| abstract_inverted_index.Convolutional | 75 |
| abstract_inverted_index.Decomposition | 67 |
| abstract_inverted_index.characterized | 33 |
| abstract_inverted_index.decomposition | 60 |
| abstract_inverted_index.effectiveness | 45, 58 |
| abstract_inverted_index.high-accuracy | 95 |
| abstract_inverted_index.interference, | 37 |
| abstract_inverted_index.VMD-CNN-BiLSTM | 97 |
| abstract_inverted_index.non-stationarity, | 35 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.41316434 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |