Wind Speed Prediction Based on a Hybrid Deep Learning Model of SSA-VMD and SSA-CNN-BiLSTM Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3233/atde250927
To enhance wind velocity forecasting precision, this study introduces a composite deep learning framework integrating Sparrow Search Algorithm (SSA), Variational Mode Decomposition (VMD), Convolutional Neural Networks (CNNs), and Bidirectional Long Short-Term Memory (BiLSTM) architectures. The methodology begins with seasonal segmentation of annual wind data into spring, summer, autumn, and winter periods, with spring serving as the primary test case. Initial wind speed measurements undergo decomposition into multiple constituent signals through VMD processing, where SSA optimizes critical VMD parameters. Subsequently, a combined CNN-BiLSTM architecture processes these decomposed components, with SSA simultaneously fine-tuning the model’s hyperparameters. Following individual subsequence analysis, signal reconstruction yields comprehensive wind speed predictions. Empirical validation employs actual meteorological records from a terrestrial monitoring station in Gansu Province. Comparative analysis demonstrates superior predictive performance and enhanced fitting accuracy relative to conventional models, confirming the framework’s effectiveness in capturing dynamic wind patterns.
Related Topics
- Type
- book-chapter
- Language
- en
- Landing Page
- https://doi.org/10.3233/atde250927
- OA Status
- diamond
- OpenAlex ID
- https://openalex.org/W4414794673
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414794673Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3233/atde250927Digital Object Identifier
- Title
-
Wind Speed Prediction Based on a Hybrid Deep Learning Model of SSA-VMD and SSA-CNN-BiLSTMWork title
- Type
-
book-chapterOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-01Full publication date if available
- Authors
-
Yang Liu, Haitao Han, Haibo Liu, Binbin Zhong, Chao GaoList of authors in order
- Landing page
-
https://doi.org/10.3233/atde250927Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3233/atde250927Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414794673 |
|---|---|
| doi | https://doi.org/10.3233/atde250927 |
| ids.doi | https://doi.org/10.3233/atde250927 |
| ids.openalex | https://openalex.org/W4414794673 |
| fwci | 0.0 |
| type | book-chapter |
| title | Wind Speed Prediction Based on a Hybrid Deep Learning Model of SSA-VMD and SSA-CNN-BiLSTM |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9320999979972839 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| topics[1].id | https://openalex.org/T11052 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9025999903678894 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.3233/atde250927 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210187496 |
| locations[0].source.issn | 2352-751X, 2352-7528 |
| locations[0].source.type | book series |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2352-751X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Advances in transdisciplinary engineering |
| locations[0].source.host_organization | https://openalex.org/P4310318577 |
| locations[0].source.host_organization_name | IOS Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310318577 |
| locations[0].source.host_organization_lineage_names | IOS Press |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Advances in Transdisciplinary Engineering |
| locations[0].landing_page_url | https://doi.org/10.3233/atde250927 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5115602248 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7240-1546 |
| authorships[0].author.display_name | Yang Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210105580 |
| authorships[0].affiliations[0].raw_affiliation_string | Gansu Meteorological Information and Technical Equipment Support Center, Lanzhou 730020, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210105580 |
| authorships[0].institutions[0].ror | https://ror.org/01e99ef13 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210105580 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Gansu Meteorological Bureau |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Gansu Meteorological Information and Technical Equipment Support Center, Lanzhou 730020, China |
| authorships[1].author.id | https://openalex.org/A5072270003 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4911-7643 |
| authorships[1].author.display_name | Haitao Han |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210105580 |
| authorships[1].affiliations[0].raw_affiliation_string | Gansu Meteorological Information and Technical Equipment Support Center, Lanzhou 730020, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210105580 |
| authorships[1].institutions[0].ror | https://ror.org/01e99ef13 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210105580 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Gansu Meteorological Bureau |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Haitao Han |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Gansu Meteorological Information and Technical Equipment Support Center, Lanzhou 730020, China |
| authorships[2].author.id | https://openalex.org/A5115602439 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4213-2883 |
| authorships[2].author.display_name | Haibo Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210105580 |
| authorships[2].affiliations[0].raw_affiliation_string | Gansu Meteorological Information and Technical Equipment Support Center, Lanzhou 730020, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210105580 |
| authorships[2].institutions[0].ror | https://ror.org/01e99ef13 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210105580 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Gansu Meteorological Bureau |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hao Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Gansu Meteorological Information and Technical Equipment Support Center, Lanzhou 730020, China |
| authorships[3].author.id | https://openalex.org/A5008268802 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1486-5411 |
| authorships[3].author.display_name | Binbin Zhong |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210105580 |
| authorships[3].affiliations[0].raw_affiliation_string | Gansu Meteorological Information and Technical Equipment Support Center, Lanzhou 730020, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210105580 |
| authorships[3].institutions[0].ror | https://ror.org/01e99ef13 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210105580 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Gansu Meteorological Bureau |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Binbin Zhong |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Gansu Meteorological Information and Technical Equipment Support Center, Lanzhou 730020, China |
| authorships[4].author.id | https://openalex.org/A5043996058 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3762-969X |
| authorships[4].author.display_name | Chao Gao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210105580 |
| authorships[4].affiliations[0].raw_affiliation_string | Gansu Meteorological Information and Technical Equipment Support Center, Lanzhou 730020, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210105580 |
| authorships[4].institutions[0].ror | https://ror.org/01e99ef13 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210105580 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Gansu Meteorological Bureau |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Chengtai Gao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Gansu Meteorological Information and Technical Equipment Support Center, Lanzhou 730020, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3233/atde250927 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Wind Speed Prediction Based on a Hybrid Deep Learning Model of SSA-VMD and SSA-CNN-BiLSTM |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9320999979972839 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3233/atde250927 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210187496 |
| best_oa_location.source.issn | 2352-751X, 2352-7528 |
| best_oa_location.source.type | book series |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2352-751X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Advances in transdisciplinary engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310318577 |
| best_oa_location.source.host_organization_name | IOS Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310318577 |
| best_oa_location.source.host_organization_lineage_names | IOS Press |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | book-chapter |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Advances in Transdisciplinary Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.3233/atde250927 |
| primary_location.id | doi:10.3233/atde250927 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210187496 |
| primary_location.source.issn | 2352-751X, 2352-7528 |
| primary_location.source.type | book series |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2352-751X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Advances in transdisciplinary engineering |
| primary_location.source.host_organization | https://openalex.org/P4310318577 |
| primary_location.source.host_organization_name | IOS Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310318577 |
| primary_location.source.host_organization_lineage_names | IOS Press |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Advances in Transdisciplinary Engineering |
| primary_location.landing_page_url | https://doi.org/10.3233/atde250927 |
| publication_date | 2025-10-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 9, 79, 112 |
| abstract_inverted_index.To | 0 |
| abstract_inverted_index.as | 54 |
| abstract_inverted_index.in | 116, 137 |
| abstract_inverted_index.of | 40 |
| abstract_inverted_index.to | 130 |
| abstract_inverted_index.SSA | 73, 88 |
| abstract_inverted_index.The | 34 |
| abstract_inverted_index.VMD | 70, 76 |
| abstract_inverted_index.and | 27, 48, 125 |
| abstract_inverted_index.the | 55, 91, 134 |
| abstract_inverted_index.Long | 29 |
| abstract_inverted_index.Mode | 20 |
| abstract_inverted_index.data | 43 |
| abstract_inverted_index.deep | 11 |
| abstract_inverted_index.from | 111 |
| abstract_inverted_index.into | 44, 65 |
| abstract_inverted_index.test | 57 |
| abstract_inverted_index.this | 6 |
| abstract_inverted_index.wind | 2, 42, 60, 102, 140 |
| abstract_inverted_index.with | 37, 51, 87 |
| abstract_inverted_index.Gansu | 117 |
| abstract_inverted_index.case. | 58 |
| abstract_inverted_index.speed | 61, 103 |
| abstract_inverted_index.study | 7 |
| abstract_inverted_index.these | 84 |
| abstract_inverted_index.where | 72 |
| abstract_inverted_index.(SSA), | 18 |
| abstract_inverted_index.(VMD), | 22 |
| abstract_inverted_index.Memory | 31 |
| abstract_inverted_index.Neural | 24 |
| abstract_inverted_index.Search | 16 |
| abstract_inverted_index.actual | 108 |
| abstract_inverted_index.annual | 41 |
| abstract_inverted_index.begins | 36 |
| abstract_inverted_index.signal | 98 |
| abstract_inverted_index.spring | 52 |
| abstract_inverted_index.winter | 49 |
| abstract_inverted_index.yields | 100 |
| abstract_inverted_index.(CNNs), | 26 |
| abstract_inverted_index.Initial | 59 |
| abstract_inverted_index.Sparrow | 15 |
| abstract_inverted_index.autumn, | 47 |
| abstract_inverted_index.dynamic | 139 |
| abstract_inverted_index.employs | 107 |
| abstract_inverted_index.enhance | 1 |
| abstract_inverted_index.fitting | 127 |
| abstract_inverted_index.models, | 132 |
| abstract_inverted_index.primary | 56 |
| abstract_inverted_index.records | 110 |
| abstract_inverted_index.serving | 53 |
| abstract_inverted_index.signals | 68 |
| abstract_inverted_index.spring, | 45 |
| abstract_inverted_index.station | 115 |
| abstract_inverted_index.summer, | 46 |
| abstract_inverted_index.through | 69 |
| abstract_inverted_index.undergo | 63 |
| abstract_inverted_index.(BiLSTM) | 32 |
| abstract_inverted_index.Networks | 25 |
| abstract_inverted_index.accuracy | 128 |
| abstract_inverted_index.analysis | 120 |
| abstract_inverted_index.combined | 80 |
| abstract_inverted_index.critical | 75 |
| abstract_inverted_index.enhanced | 126 |
| abstract_inverted_index.learning | 12 |
| abstract_inverted_index.multiple | 66 |
| abstract_inverted_index.periods, | 50 |
| abstract_inverted_index.relative | 129 |
| abstract_inverted_index.seasonal | 38 |
| abstract_inverted_index.superior | 122 |
| abstract_inverted_index.velocity | 3 |
| abstract_inverted_index.Algorithm | 17 |
| abstract_inverted_index.Empirical | 105 |
| abstract_inverted_index.Following | 94 |
| abstract_inverted_index.Province. | 118 |
| abstract_inverted_index.analysis, | 97 |
| abstract_inverted_index.capturing | 138 |
| abstract_inverted_index.composite | 10 |
| abstract_inverted_index.framework | 13 |
| abstract_inverted_index.model’s | 92 |
| abstract_inverted_index.optimizes | 74 |
| abstract_inverted_index.patterns. | 141 |
| abstract_inverted_index.processes | 83 |
| abstract_inverted_index.CNN-BiLSTM | 81 |
| abstract_inverted_index.Short-Term | 30 |
| abstract_inverted_index.confirming | 133 |
| abstract_inverted_index.decomposed | 85 |
| abstract_inverted_index.individual | 95 |
| abstract_inverted_index.introduces | 8 |
| abstract_inverted_index.monitoring | 114 |
| abstract_inverted_index.precision, | 5 |
| abstract_inverted_index.predictive | 123 |
| abstract_inverted_index.validation | 106 |
| abstract_inverted_index.Comparative | 119 |
| abstract_inverted_index.Variational | 19 |
| abstract_inverted_index.components, | 86 |
| abstract_inverted_index.constituent | 67 |
| abstract_inverted_index.fine-tuning | 90 |
| abstract_inverted_index.forecasting | 4 |
| abstract_inverted_index.integrating | 14 |
| abstract_inverted_index.methodology | 35 |
| abstract_inverted_index.parameters. | 77 |
| abstract_inverted_index.performance | 124 |
| abstract_inverted_index.processing, | 71 |
| abstract_inverted_index.subsequence | 96 |
| abstract_inverted_index.terrestrial | 113 |
| abstract_inverted_index.architecture | 82 |
| abstract_inverted_index.conventional | 131 |
| abstract_inverted_index.demonstrates | 121 |
| abstract_inverted_index.measurements | 62 |
| abstract_inverted_index.predictions. | 104 |
| abstract_inverted_index.segmentation | 39 |
| abstract_inverted_index.Bidirectional | 28 |
| abstract_inverted_index.Convolutional | 23 |
| abstract_inverted_index.Decomposition | 21 |
| abstract_inverted_index.Subsequently, | 78 |
| abstract_inverted_index.comprehensive | 101 |
| abstract_inverted_index.decomposition | 64 |
| abstract_inverted_index.effectiveness | 136 |
| abstract_inverted_index.framework’s | 135 |
| abstract_inverted_index.architectures. | 33 |
| abstract_inverted_index.meteorological | 109 |
| abstract_inverted_index.reconstruction | 99 |
| abstract_inverted_index.simultaneously | 89 |
| abstract_inverted_index.hyperparameters. | 93 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.78496014 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |