Window-Adjusted Common Spatial Pattern for Detecting Error-Related Potentials in P300 BCI Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1007/s11063-023-11353-7
Under certain task conditions, error-related potential (ErrP) will be elicited, meaning that the subject is perceiving an error, responding to an external error, or engaging in a cognitive process of reinforcement learning. The detection of ErrP on a single trial basis has been studied and applied to improve all kinds of brain–computer interfaces (BCIs). However, the performance of this kind of detection is not currently good enough. In the paper, we proposed a novel method, called window-adjusted common spatial pattern (WACSP), for detecting ErrP in P300 BCI. In this method, the coefficient of determination was introduced to measure the difference of Electroencephalogram (EEG) signals on a channel at a moment and to guide the search of time windows in which EEG differences are significant, and common spatial pattern (CSP) was further used to capture the stable spatial patterns of EEG differences between correct and incorrect responses in each time window. WACSP and the commonly used methods were tested on the data sets that were built using the EEG signals acquired during the P300 BCI experiments with different feedback. The comparisons of accuracy, area under receiver operating characteristics curve (AUC) and F-measure show that WACSP significantly outperforms the commonly used methods. The proposed method can improve ErrP detection based on a single trial.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s11063-023-11353-7
- https://link.springer.com/content/pdf/10.1007/s11063-023-11353-7.pdf
- OA Status
- hybrid
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385717394
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385717394Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s11063-023-11353-7Digital Object Identifier
- Title
-
Window-Adjusted Common Spatial Pattern for Detecting Error-Related Potentials in P300 BCIWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-08Full publication date if available
- Authors
-
Zhihua Huang, Minghong Li, Wenming Zheng, Yingjie Wu, Kun Jiang, Huiru ZhengList of authors in order
- Landing page
-
https://doi.org/10.1007/s11063-023-11353-7Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s11063-023-11353-7.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s11063-023-11353-7.pdfDirect OA link when available
- Concepts
-
Brain–computer interface, Electroencephalography, Computer science, Contrast (vision), Artificial intelligence, Pattern recognition (psychology), Psychology, PsychiatryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385717394 |
|---|---|
| doi | https://doi.org/10.1007/s11063-023-11353-7 |
| ids.doi | https://doi.org/10.1007/s11063-023-11353-7 |
| ids.openalex | https://openalex.org/W4385717394 |
| fwci | 0.0 |
| type | article |
| title | Window-Adjusted Common Spatial Pattern for Detecting Error-Related Potentials in P300 BCI |
| biblio.issue | 8 |
| biblio.volume | 55 |
| biblio.last_page | 10844 |
| biblio.first_page | 10829 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10581 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9965999722480774 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Neural dynamics and brain function |
| topics[2].id | https://openalex.org/T11601 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9936000108718872 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2804 |
| topics[2].subfield.display_name | Cellular and Molecular Neuroscience |
| topics[2].display_name | Neuroscience and Neural Engineering |
| is_xpac | False |
| apc_list.value | 2390 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2990 |
| apc_paid.value | 2390 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2990 |
| concepts[0].id | https://openalex.org/C173201364 |
| concepts[0].level | 3 |
| concepts[0].score | 0.802059531211853 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q897410 |
| concepts[0].display_name | Brain–computer interface |
| concepts[1].id | https://openalex.org/C522805319 |
| concepts[1].level | 2 |
| concepts[1].score | 0.738517701625824 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[1].display_name | Electroencephalography |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7313228845596313 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2776502983 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5973377227783203 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q690182 |
| concepts[3].display_name | Contrast (vision) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5624440908432007 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.528278648853302 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.1258932650089264 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C118552586 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[7].display_name | Psychiatry |
| keywords[0].id | https://openalex.org/keywords/brain–computer-interface |
| keywords[0].score | 0.802059531211853 |
| keywords[0].display_name | Brain–computer interface |
| keywords[1].id | https://openalex.org/keywords/electroencephalography |
| keywords[1].score | 0.738517701625824 |
| keywords[1].display_name | Electroencephalography |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7313228845596313 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/contrast |
| keywords[3].score | 0.5973377227783203 |
| keywords[3].display_name | Contrast (vision) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5624440908432007 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.528278648853302 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.1258932650089264 |
| keywords[6].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.1007/s11063-023-11353-7 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S140962798 |
| locations[0].source.issn | 1370-4621, 1573-773X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1370-4621 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Neural Processing Letters |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s11063-023-11353-7.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Neural Processing Letters |
| locations[0].landing_page_url | https://doi.org/10.1007/s11063-023-11353-7 |
| locations[1].id | pmh:oai:pure.atira.dk:publications/d8f7eea3-31fd-4268-bb7a-053735832e37 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400216 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Research Portal (King's College London) |
| locations[1].source.host_organization | https://openalex.org/I183935753 |
| locations[1].source.host_organization_name | King's College London |
| locations[1].source.host_organization_lineage | https://openalex.org/I183935753 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Huang, Z, Li, M, Zheng, W, Wu, Y, Jiang, K & Zheng, H 2023, 'Window-Adjusted Common Spatial Pattern for Detecting Error-Related Potentials in P300 BCI', Neural Processing Letters, vol. 55, no. 8, pp. 10829-10844. https://doi.org/10.1007/s11063-023-11353-7 |
| locations[1].landing_page_url | https://pure.ulster.ac.uk/en/publications/d8f7eea3-31fd-4268-bb7a-053735832e37 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5056424666 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5710-5231 |
| authorships[0].author.display_name | Zhihua Huang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I80947539 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer and Big Data, Fuzhou University, Fuzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I80947539 |
| authorships[0].institutions[0].ror | https://ror.org/011xvna82 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I80947539 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Fuzhou University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhihua Huang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | College of Computer and Big Data, Fuzhou University, Fuzhou, China |
| authorships[1].author.id | https://openalex.org/A5101452325 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9619-8976 |
| authorships[1].author.display_name | Minghong Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I189210763 |
| authorships[1].affiliations[0].raw_affiliation_string | Basic Medical College, Yunnan University of Chinese Medicine, Kunming, China |
| authorships[1].institutions[0].id | https://openalex.org/I189210763 |
| authorships[1].institutions[0].ror | https://ror.org/0040axw97 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I189210763 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Yunnan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Minghong Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Basic Medical College, Yunnan University of Chinese Medicine, Kunming, China |
| authorships[2].author.id | https://openalex.org/A5029771864 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7764-5179 |
| authorships[2].author.display_name | Wenming Zheng |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, China |
| authorships[2].institutions[0].id | https://openalex.org/I76569877 |
| authorships[2].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Southeast University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wenming Zheng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, China |
| authorships[3].author.id | https://openalex.org/A5102004962 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3075-7584 |
| authorships[3].author.display_name | Yingjie Wu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I80947539 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Computer and Big Data, Fuzhou University, Fuzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I80947539 |
| authorships[3].institutions[0].ror | https://ror.org/011xvna82 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I80947539 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Fuzhou University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yingjie Wu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Computer and Big Data, Fuzhou University, Fuzhou, China |
| authorships[4].author.id | https://openalex.org/A5087732258 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0436-1212 |
| authorships[4].author.display_name | Kun Jiang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I80947539 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Computer and Big Data, Fuzhou University, Fuzhou, China |
| authorships[4].institutions[0].id | https://openalex.org/I80947539 |
| authorships[4].institutions[0].ror | https://ror.org/011xvna82 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I80947539 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Fuzhou University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kun Jiang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Computer and Big Data, Fuzhou University, Fuzhou, China |
| authorships[5].author.id | https://openalex.org/A5024401909 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7648-8709 |
| authorships[5].author.display_name | Huiru Zheng |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I138801177 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Computing, Ulster University, Belfast, UK |
| authorships[5].institutions[0].id | https://openalex.org/I138801177 |
| authorships[5].institutions[0].ror | https://ror.org/01yp9g959 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I138801177 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | University of Ulster |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Huiru Zheng |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | School of Computing, Ulster University, Belfast, UK |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s11063-023-11353-7.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Window-Adjusted Common Spatial Pattern for Detecting Error-Related Potentials in P300 BCI |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W3202969339, https://openalex.org/W4237513258, https://openalex.org/W1994410349, https://openalex.org/W3177028067, https://openalex.org/W1913385466, https://openalex.org/W2889342546, https://openalex.org/W2015048155, https://openalex.org/W1616854372, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s11063-023-11353-7 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S140962798 |
| best_oa_location.source.issn | 1370-4621, 1573-773X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1370-4621 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Neural Processing Letters |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11063-023-11353-7.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Neural Processing Letters |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s11063-023-11353-7 |
| primary_location.id | doi:10.1007/s11063-023-11353-7 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S140962798 |
| primary_location.source.issn | 1370-4621, 1573-773X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1370-4621 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Neural Processing Letters |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11063-023-11353-7.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Neural Processing Letters |
| primary_location.landing_page_url | https://doi.org/10.1007/s11063-023-11353-7 |
| publication_date | 2023-08-08 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2057509043, https://openalex.org/W2165389751, https://openalex.org/W2794542090, https://openalex.org/W2975049979, https://openalex.org/W2071583576, https://openalex.org/W2946737085, https://openalex.org/W1987883337, https://openalex.org/W1966086907, https://openalex.org/W2130847623, https://openalex.org/W2141840333, https://openalex.org/W2092064877, https://openalex.org/W2246170000, https://openalex.org/W2757114988, https://openalex.org/W2606655263, https://openalex.org/W2920396602, https://openalex.org/W2912013430, https://openalex.org/W2963341330, https://openalex.org/W2898324619, https://openalex.org/W2989855948, https://openalex.org/W3004839160, https://openalex.org/W2075647286, https://openalex.org/W2794345050, https://openalex.org/W2894618259, https://openalex.org/W1971274817, https://openalex.org/W1995506038, https://openalex.org/W2059728256, https://openalex.org/W2104063964, https://openalex.org/W2152171700, https://openalex.org/W2566961903, https://openalex.org/W2989685331, https://openalex.org/W2170821486, https://openalex.org/W2151669316, https://openalex.org/W2098100592, https://openalex.org/W2158655338, https://openalex.org/W2150823344, https://openalex.org/W2046649434, https://openalex.org/W2158698691, https://openalex.org/W2131251829 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 27, 38, 73, 106, 109, 210 |
| abstract_inverted_index.In | 68, 88 |
| abstract_inverted_index.an | 17, 21 |
| abstract_inverted_index.at | 108 |
| abstract_inverted_index.be | 9 |
| abstract_inverted_index.in | 26, 85, 119, 147 |
| abstract_inverted_index.is | 15, 63 |
| abstract_inverted_index.of | 30, 35, 51, 58, 61, 93, 101, 116, 139, 181 |
| abstract_inverted_index.on | 37, 105, 159, 209 |
| abstract_inverted_index.or | 24 |
| abstract_inverted_index.to | 20, 47, 97, 112, 133 |
| abstract_inverted_index.we | 71 |
| abstract_inverted_index.BCI | 174 |
| abstract_inverted_index.EEG | 121, 140, 168 |
| abstract_inverted_index.The | 33, 179, 201 |
| abstract_inverted_index.all | 49 |
| abstract_inverted_index.and | 45, 111, 125, 144, 152, 190 |
| abstract_inverted_index.are | 123 |
| abstract_inverted_index.can | 204 |
| abstract_inverted_index.for | 82 |
| abstract_inverted_index.has | 42 |
| abstract_inverted_index.not | 64 |
| abstract_inverted_index.the | 13, 56, 69, 91, 99, 114, 135, 153, 160, 167, 172, 197 |
| abstract_inverted_index.was | 95, 130 |
| abstract_inverted_index.BCI. | 87 |
| abstract_inverted_index.ErrP | 36, 84, 206 |
| abstract_inverted_index.P300 | 86, 173 |
| abstract_inverted_index.area | 183 |
| abstract_inverted_index.been | 43 |
| abstract_inverted_index.data | 161 |
| abstract_inverted_index.each | 148 |
| abstract_inverted_index.good | 66 |
| abstract_inverted_index.kind | 60 |
| abstract_inverted_index.sets | 162 |
| abstract_inverted_index.show | 192 |
| abstract_inverted_index.task | 3 |
| abstract_inverted_index.that | 12, 163, 193 |
| abstract_inverted_index.this | 59, 89 |
| abstract_inverted_index.time | 117, 149 |
| abstract_inverted_index.used | 132, 155, 199 |
| abstract_inverted_index.were | 157, 164 |
| abstract_inverted_index.will | 8 |
| abstract_inverted_index.with | 176 |
| abstract_inverted_index.(AUC) | 189 |
| abstract_inverted_index.(CSP) | 129 |
| abstract_inverted_index.(EEG) | 103 |
| abstract_inverted_index.Under | 1 |
| abstract_inverted_index.WACSP | 151, 194 |
| abstract_inverted_index.based | 208 |
| abstract_inverted_index.basis | 41 |
| abstract_inverted_index.built | 165 |
| abstract_inverted_index.curve | 188 |
| abstract_inverted_index.guide | 113 |
| abstract_inverted_index.kinds | 50 |
| abstract_inverted_index.novel | 74 |
| abstract_inverted_index.trial | 40 |
| abstract_inverted_index.under | 184 |
| abstract_inverted_index.using | 166 |
| abstract_inverted_index.which | 120 |
| abstract_inverted_index.(ErrP) | 7 |
| abstract_inverted_index.called | 76 |
| abstract_inverted_index.common | 78, 126 |
| abstract_inverted_index.during | 171 |
| abstract_inverted_index.error, | 18, 23 |
| abstract_inverted_index.method | 203 |
| abstract_inverted_index.moment | 110 |
| abstract_inverted_index.paper, | 70 |
| abstract_inverted_index.search | 115 |
| abstract_inverted_index.single | 39, 211 |
| abstract_inverted_index.stable | 136 |
| abstract_inverted_index.tested | 158 |
| abstract_inverted_index.trial. | 212 |
| abstract_inverted_index.(BCIs). | 54 |
| abstract_inverted_index.applied | 46 |
| abstract_inverted_index.between | 142 |
| abstract_inverted_index.capture | 134 |
| abstract_inverted_index.certain | 2 |
| abstract_inverted_index.channel | 107 |
| abstract_inverted_index.correct | 143 |
| abstract_inverted_index.enough. | 67 |
| abstract_inverted_index.further | 131 |
| abstract_inverted_index.improve | 48, 205 |
| abstract_inverted_index.meaning | 11 |
| abstract_inverted_index.measure | 98 |
| abstract_inverted_index.method, | 75, 90 |
| abstract_inverted_index.methods | 156 |
| abstract_inverted_index.pattern | 80, 128 |
| abstract_inverted_index.process | 29 |
| abstract_inverted_index.signals | 104, 169 |
| abstract_inverted_index.spatial | 79, 127, 137 |
| abstract_inverted_index.studied | 44 |
| abstract_inverted_index.subject | 14 |
| abstract_inverted_index.window. | 150 |
| abstract_inverted_index.windows | 118 |
| abstract_inverted_index.(WACSP), | 81 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 55 |
| abstract_inverted_index.acquired | 170 |
| abstract_inverted_index.commonly | 154, 198 |
| abstract_inverted_index.engaging | 25 |
| abstract_inverted_index.external | 22 |
| abstract_inverted_index.methods. | 200 |
| abstract_inverted_index.patterns | 138 |
| abstract_inverted_index.proposed | 72, 202 |
| abstract_inverted_index.receiver | 185 |
| abstract_inverted_index.F-measure | 191 |
| abstract_inverted_index.accuracy, | 182 |
| abstract_inverted_index.cognitive | 28 |
| abstract_inverted_index.currently | 65 |
| abstract_inverted_index.detecting | 83 |
| abstract_inverted_index.detection | 34, 62, 207 |
| abstract_inverted_index.different | 177 |
| abstract_inverted_index.elicited, | 10 |
| abstract_inverted_index.feedback. | 178 |
| abstract_inverted_index.incorrect | 145 |
| abstract_inverted_index.learning. | 32 |
| abstract_inverted_index.operating | 186 |
| abstract_inverted_index.potential | 6 |
| abstract_inverted_index.responses | 146 |
| abstract_inverted_index.difference | 100 |
| abstract_inverted_index.interfaces | 53 |
| abstract_inverted_index.introduced | 96 |
| abstract_inverted_index.perceiving | 16 |
| abstract_inverted_index.responding | 19 |
| abstract_inverted_index.coefficient | 92 |
| abstract_inverted_index.comparisons | 180 |
| abstract_inverted_index.conditions, | 4 |
| abstract_inverted_index.differences | 122, 141 |
| abstract_inverted_index.experiments | 175 |
| abstract_inverted_index.outperforms | 196 |
| abstract_inverted_index.performance | 57 |
| abstract_inverted_index.significant, | 124 |
| abstract_inverted_index.determination | 94 |
| abstract_inverted_index.error-related | 5 |
| abstract_inverted_index.reinforcement | 31 |
| abstract_inverted_index.significantly | 195 |
| abstract_inverted_index.characteristics | 187 |
| abstract_inverted_index.window-adjusted | 77 |
| abstract_inverted_index.brain–computer | 52 |
| abstract_inverted_index.Electroencephalogram | 102 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5056424666, https://openalex.org/A5024401909 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I138801177, https://openalex.org/I80947539 |
| citation_normalized_percentile.value | 0.12696915 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |