Work Process Efficiency With Goods Arrival Predictions Against Production Plans Using Linear Regression Algorithms Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.59805/ecsit.v1i1.5
This study discusses how an algorithm can produce predictions used as a reference for implementing work efficiency using the Linear Regression Algorithm. Linear Regression Algorithm is an algorithm that allows to calculate the linear relationship between the dependent and independent variables to make predictions. In his observations, the researcher used one sample which is data on the arrival of goods in the Production Control department of PT XYZ Indonesia with a total IN part of 9055551, part OUT of 332037. The results of predictions made using the Linear Regression Algorithm in (February-May) in 2022 are 4981165 and on the results of testing the prediction results using the MAPE (Mean Absolute Percentage Error) method produces an error of 6% where 6% is still in category A <10% which is very accurate. The results of this prediction produce Man Power, Space and Shuttle efficiency with a reduction of 1 Man Power, 500m2 space and 5 shuttles with a total profit of Rp. 1,897,670,000 per year and can meet the demand for new suppliers to fill the warehouse area. Researchers can conclude that researchers can find out the stages, processes, and results in applying the Linear Regression Algorithm by an average of 90% from previous studies which can predict the arrival of goods and produce work efficiency.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.59805/ecsit.v1i1.5
- https://journal.edutran.id/index.php/ecsit/article/download/5/27
- OA Status
- diamond
- References
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4380836782
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4380836782Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.59805/ecsit.v1i1.5Digital Object Identifier
- Title
-
Work Process Efficiency With Goods Arrival Predictions Against Production Plans Using Linear Regression AlgorithmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-13Full publication date if available
- Authors
-
Bramandito Yusuf Rizqi Affandi, Yana Cahyana, Dwi Sulistya Kusumaningrum, April Lia Hananto, Fitri MarisaList of authors in order
- Landing page
-
https://doi.org/10.59805/ecsit.v1i1.5Publisher landing page
- PDF URL
-
https://journal.edutran.id/index.php/ecsit/article/download/5/27Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://journal.edutran.id/index.php/ecsit/article/download/5/27Direct OA link when available
- Concepts
-
Mean absolute percentage error, Linear regression, Production (economics), Computer science, Algorithm, Regression, Regression analysis, Linear model, Statistics, Work (physics), Profit (economics), Mathematics, Mean squared error, Engineering, Economics, Microeconomics, Mechanical engineering, MacroeconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4380836782 |
|---|---|
| doi | https://doi.org/10.59805/ecsit.v1i1.5 |
| ids.doi | https://doi.org/10.59805/ecsit.v1i1.5 |
| ids.openalex | https://openalex.org/W4380836782 |
| fwci | 0.0 |
| type | article |
| title | Work Process Efficiency With Goods Arrival Predictions Against Production Plans Using Linear Regression Algorithms |
| biblio.issue | 1 |
| biblio.volume | 1 |
| biblio.last_page | 18 |
| biblio.first_page | 9 |
| topics[0].id | https://openalex.org/T13706 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.9671000242233276 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1408 |
| topics[0].subfield.display_name | Strategy and Management |
| topics[0].display_name | Management and Optimization Techniques |
| topics[1].id | https://openalex.org/T13373 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9363999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Data Mining and Machine Learning Applications |
| topics[2].id | https://openalex.org/T14216 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9348999857902527 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Multimedia Learning Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C150217764 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7298837304115295 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6803607 |
| concepts[0].display_name | Mean absolute percentage error |
| concepts[1].id | https://openalex.org/C48921125 |
| concepts[1].level | 2 |
| concepts[1].score | 0.719190239906311 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[1].display_name | Linear regression |
| concepts[2].id | https://openalex.org/C2778348673 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5209875702857971 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q739302 |
| concepts[2].display_name | Production (economics) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5066943764686584 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4865385591983795 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C83546350 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48464494943618774 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[5].display_name | Regression |
| concepts[6].id | https://openalex.org/C152877465 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48052844405174255 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[6].display_name | Regression analysis |
| concepts[7].id | https://openalex.org/C163175372 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46945255994796753 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3339222 |
| concepts[7].display_name | Linear model |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.45982789993286133 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C18762648 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41524988412857056 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q42213 |
| concepts[9].display_name | Work (physics) |
| concepts[10].id | https://openalex.org/C181622380 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4137362241744995 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q26911 |
| concepts[10].display_name | Profit (economics) |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.33840203285217285 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C139945424 |
| concepts[12].level | 2 |
| concepts[12].score | 0.27657338976860046 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[12].display_name | Mean squared error |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1479054093360901 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| concepts[15].id | https://openalex.org/C175444787 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q39072 |
| concepts[15].display_name | Microeconomics |
| concepts[16].id | https://openalex.org/C78519656 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[16].display_name | Mechanical engineering |
| concepts[17].id | https://openalex.org/C139719470 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q39680 |
| concepts[17].display_name | Macroeconomics |
| keywords[0].id | https://openalex.org/keywords/mean-absolute-percentage-error |
| keywords[0].score | 0.7298837304115295 |
| keywords[0].display_name | Mean absolute percentage error |
| keywords[1].id | https://openalex.org/keywords/linear-regression |
| keywords[1].score | 0.719190239906311 |
| keywords[1].display_name | Linear regression |
| keywords[2].id | https://openalex.org/keywords/production |
| keywords[2].score | 0.5209875702857971 |
| keywords[2].display_name | Production (economics) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5066943764686584 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.4865385591983795 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/regression |
| keywords[5].score | 0.48464494943618774 |
| keywords[5].display_name | Regression |
| keywords[6].id | https://openalex.org/keywords/regression-analysis |
| keywords[6].score | 0.48052844405174255 |
| keywords[6].display_name | Regression analysis |
| keywords[7].id | https://openalex.org/keywords/linear-model |
| keywords[7].score | 0.46945255994796753 |
| keywords[7].display_name | Linear model |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.45982789993286133 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/work |
| keywords[9].score | 0.41524988412857056 |
| keywords[9].display_name | Work (physics) |
| keywords[10].id | https://openalex.org/keywords/profit |
| keywords[10].score | 0.4137362241744995 |
| keywords[10].display_name | Profit (economics) |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.33840203285217285 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/mean-squared-error |
| keywords[12].score | 0.27657338976860046 |
| keywords[12].display_name | Mean squared error |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.1479054093360901 |
| keywords[13].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.59805/ecsit.v1i1.5 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387290324 |
| locations[0].source.issn | 2986-7703, 2986-9013 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2986-7703 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Edutran Computer Science and Information Technology |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://journal.edutran.id/index.php/ecsit/article/download/5/27 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Edutran Computer Science and Information Technology |
| locations[0].landing_page_url | https://doi.org/10.59805/ecsit.v1i1.5 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5092178271 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Bramandito Yusuf Rizqi Affandi |
| authorships[0].countries | ID |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I177671886 |
| authorships[0].affiliations[0].raw_affiliation_string | s:37:"Universitas Buana Perjuangan Karawang" |
| authorships[0].affiliations[1].raw_affiliation_string | a:1:{s:5:"en_US" |
| authorships[0].institutions[0].id | https://openalex.org/I177671886 |
| authorships[0].institutions[0].ror | https://ror.org/00qjgk605 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I177671886 |
| authorships[0].institutions[0].country_code | ID |
| authorships[0].institutions[0].display_name | Mercu Buana University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bramandito Yusuf Rizqi Affandi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | a:1:{s:5:"en_US", s:37:"Universitas Buana Perjuangan Karawang" |
| authorships[1].author.id | https://openalex.org/A5013362761 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yana Cahyana |
| authorships[1].countries | ID |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I177671886 |
| authorships[1].affiliations[0].raw_affiliation_string | Universitas Buana Perjuangan Karawang |
| authorships[1].institutions[0].id | https://openalex.org/I177671886 |
| authorships[1].institutions[0].ror | https://ror.org/00qjgk605 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I177671886 |
| authorships[1].institutions[0].country_code | ID |
| authorships[1].institutions[0].display_name | Mercu Buana University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yana Cahyana |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Universitas Buana Perjuangan Karawang |
| authorships[2].author.id | https://openalex.org/A5068504563 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Dwi Sulistya Kusumaningrum |
| authorships[2].countries | ID |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I177671886 |
| authorships[2].affiliations[0].raw_affiliation_string | Universitas Buana Perjuangan Karawang |
| authorships[2].institutions[0].id | https://openalex.org/I177671886 |
| authorships[2].institutions[0].ror | https://ror.org/00qjgk605 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I177671886 |
| authorships[2].institutions[0].country_code | ID |
| authorships[2].institutions[0].display_name | Mercu Buana University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dwi Sulistya Kusumaningrum |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Universitas Buana Perjuangan Karawang |
| authorships[3].author.id | https://openalex.org/A5059539737 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4583-9742 |
| authorships[3].author.display_name | April Lia Hananto |
| authorships[3].countries | ID |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I177671886 |
| authorships[3].affiliations[0].raw_affiliation_string | Universitas Buana Perjuangan Karawang |
| authorships[3].institutions[0].id | https://openalex.org/I177671886 |
| authorships[3].institutions[0].ror | https://ror.org/00qjgk605 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I177671886 |
| authorships[3].institutions[0].country_code | ID |
| authorships[3].institutions[0].display_name | Mercu Buana University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | April Lia Hananto |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Universitas Buana Perjuangan Karawang |
| authorships[4].author.id | https://openalex.org/A5086718607 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5152-3544 |
| authorships[4].author.display_name | Fitri Marisa |
| authorships[4].countries | ID |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2915384603 |
| authorships[4].affiliations[0].raw_affiliation_string | Universitas Widyagama Malang |
| authorships[4].institutions[0].id | https://openalex.org/I2915384603 |
| authorships[4].institutions[0].ror | https://ror.org/017pgz739 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I2915384603 |
| authorships[4].institutions[0].country_code | ID |
| authorships[4].institutions[0].display_name | Universitas Widya Gama Malang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Fitri Marisa |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Universitas Widyagama Malang |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journal.edutran.id/index.php/ecsit/article/download/5/27 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Work Process Efficiency With Goods Arrival Predictions Against Production Plans Using Linear Regression Algorithms |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13706 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.9671000242233276 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1408 |
| primary_topic.subfield.display_name | Strategy and Management |
| primary_topic.display_name | Management and Optimization Techniques |
| related_works | https://openalex.org/W3173956219, https://openalex.org/W2375721435, https://openalex.org/W2616061094, https://openalex.org/W2060912888, https://openalex.org/W2184922845, https://openalex.org/W2738033194, https://openalex.org/W4290879003, https://openalex.org/W3122861356, https://openalex.org/W1968483434, https://openalex.org/W2359448657 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.59805/ecsit.v1i1.5 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387290324 |
| best_oa_location.source.issn | 2986-7703, 2986-9013 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2986-7703 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Edutran Computer Science and Information Technology |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://journal.edutran.id/index.php/ecsit/article/download/5/27 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Edutran Computer Science and Information Technology |
| best_oa_location.landing_page_url | https://doi.org/10.59805/ecsit.v1i1.5 |
| primary_location.id | doi:10.59805/ecsit.v1i1.5 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387290324 |
| primary_location.source.issn | 2986-7703, 2986-9013 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2986-7703 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Edutran Computer Science and Information Technology |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://journal.edutran.id/index.php/ecsit/article/download/5/27 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Edutran Computer Science and Information Technology |
| primary_location.landing_page_url | https://doi.org/10.59805/ecsit.v1i1.5 |
| publication_date | 2023-03-13 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4327886425, https://openalex.org/W4311412450, https://openalex.org/W4319315031, https://openalex.org/W2059416780, https://openalex.org/W2809986361, https://openalex.org/W3044728976, https://openalex.org/W2952297896, https://openalex.org/W2921036261, https://openalex.org/W4388875046, https://openalex.org/W2609881461, https://openalex.org/W4283269694, https://openalex.org/W1997819786, https://openalex.org/W2608730641, https://openalex.org/W2997249568, https://openalex.org/W2806473647, https://openalex.org/W4321455516, https://openalex.org/W3134163444, https://openalex.org/W1995949855, https://openalex.org/W3040731941, https://openalex.org/W4321473584 |
| referenced_works_count | 20 |
| abstract_inverted_index.1 | 146 |
| abstract_inverted_index.5 | 152 |
| abstract_inverted_index.A | 124 |
| abstract_inverted_index.a | 11, 70, 143, 155 |
| abstract_inverted_index.6% | 117, 119 |
| abstract_inverted_index.IN | 72 |
| abstract_inverted_index.In | 44 |
| abstract_inverted_index.PT | 66 |
| abstract_inverted_index.an | 4, 26, 114, 196 |
| abstract_inverted_index.as | 10 |
| abstract_inverted_index.by | 195 |
| abstract_inverted_index.in | 60, 90, 92, 122, 189 |
| abstract_inverted_index.is | 25, 53, 120, 127 |
| abstract_inverted_index.of | 58, 65, 74, 78, 82, 100, 116, 132, 145, 158, 198, 208 |
| abstract_inverted_index.on | 55, 97 |
| abstract_inverted_index.to | 30, 41, 171 |
| abstract_inverted_index.90% | 199 |
| abstract_inverted_index.Man | 136, 147 |
| abstract_inverted_index.OUT | 77 |
| abstract_inverted_index.Rp. | 159 |
| abstract_inverted_index.The | 80, 130 |
| abstract_inverted_index.XYZ | 67 |
| abstract_inverted_index.and | 38, 96, 139, 151, 163, 187, 210 |
| abstract_inverted_index.are | 94 |
| abstract_inverted_index.can | 6, 164, 177, 181, 204 |
| abstract_inverted_index.for | 13, 168 |
| abstract_inverted_index.his | 45 |
| abstract_inverted_index.how | 3 |
| abstract_inverted_index.new | 169 |
| abstract_inverted_index.one | 50 |
| abstract_inverted_index.out | 183 |
| abstract_inverted_index.per | 161 |
| abstract_inverted_index.the | 18, 32, 36, 47, 56, 61, 86, 98, 102, 106, 166, 173, 184, 191, 206 |
| abstract_inverted_index.2022 | 93 |
| abstract_inverted_index.MAPE | 107 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.data | 54 |
| abstract_inverted_index.fill | 172 |
| abstract_inverted_index.find | 182 |
| abstract_inverted_index.from | 200 |
| abstract_inverted_index.made | 84 |
| abstract_inverted_index.make | 42 |
| abstract_inverted_index.meet | 165 |
| abstract_inverted_index.part | 73, 76 |
| abstract_inverted_index.that | 28, 179 |
| abstract_inverted_index.this | 133 |
| abstract_inverted_index.used | 9, 49 |
| abstract_inverted_index.very | 128 |
| abstract_inverted_index.with | 69, 142, 154 |
| abstract_inverted_index.work | 15, 212 |
| abstract_inverted_index.year | 162 |
| abstract_inverted_index.(Mean | 108 |
| abstract_inverted_index.500m2 | 149 |
| abstract_inverted_index.Space | 138 |
| abstract_inverted_index.area. | 175 |
| abstract_inverted_index.error | 115 |
| abstract_inverted_index.goods | 59, 209 |
| abstract_inverted_index.space | 150 |
| abstract_inverted_index.still | 121 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.total | 71, 156 |
| abstract_inverted_index.using | 17, 85, 105 |
| abstract_inverted_index.where | 118 |
| abstract_inverted_index.which | 52, 126, 203 |
| abstract_inverted_index.Error) | 111 |
| abstract_inverted_index.Linear | 19, 22, 87, 192 |
| abstract_inverted_index.Power, | 137, 148 |
| abstract_inverted_index.allows | 29 |
| abstract_inverted_index.demand | 167 |
| abstract_inverted_index.linear | 33 |
| abstract_inverted_index.method | 112 |
| abstract_inverted_index.profit | 157 |
| abstract_inverted_index.sample | 51 |
| abstract_inverted_index.<10% | 125 |
| abstract_inverted_index.332037. | 79 |
| abstract_inverted_index.4981165 | 95 |
| abstract_inverted_index.Control | 63 |
| abstract_inverted_index.Shuttle | 140 |
| abstract_inverted_index.arrival | 57, 207 |
| abstract_inverted_index.average | 197 |
| abstract_inverted_index.between | 35 |
| abstract_inverted_index.predict | 205 |
| abstract_inverted_index.produce | 7, 135, 211 |
| abstract_inverted_index.results | 81, 99, 104, 131, 188 |
| abstract_inverted_index.stages, | 185 |
| abstract_inverted_index.studies | 202 |
| abstract_inverted_index.testing | 101 |
| abstract_inverted_index.9055551, | 75 |
| abstract_inverted_index.Absolute | 109 |
| abstract_inverted_index.applying | 190 |
| abstract_inverted_index.category | 123 |
| abstract_inverted_index.conclude | 178 |
| abstract_inverted_index.previous | 201 |
| abstract_inverted_index.produces | 113 |
| abstract_inverted_index.shuttles | 153 |
| abstract_inverted_index.Algorithm | 24, 89, 194 |
| abstract_inverted_index.Indonesia | 68 |
| abstract_inverted_index.accurate. | 129 |
| abstract_inverted_index.algorithm | 5, 27 |
| abstract_inverted_index.calculate | 31 |
| abstract_inverted_index.dependent | 37 |
| abstract_inverted_index.discusses | 2 |
| abstract_inverted_index.reduction | 144 |
| abstract_inverted_index.reference | 12 |
| abstract_inverted_index.suppliers | 170 |
| abstract_inverted_index.variables | 40 |
| abstract_inverted_index.warehouse | 174 |
| abstract_inverted_index.Algorithm. | 21 |
| abstract_inverted_index.Percentage | 110 |
| abstract_inverted_index.Production | 62 |
| abstract_inverted_index.Regression | 20, 23, 88, 193 |
| abstract_inverted_index.department | 64 |
| abstract_inverted_index.efficiency | 16, 141 |
| abstract_inverted_index.prediction | 103, 134 |
| abstract_inverted_index.processes, | 186 |
| abstract_inverted_index.researcher | 48 |
| abstract_inverted_index.Researchers | 176 |
| abstract_inverted_index.efficiency. | 213 |
| abstract_inverted_index.independent | 39 |
| abstract_inverted_index.predictions | 8, 83 |
| abstract_inverted_index.researchers | 180 |
| abstract_inverted_index.implementing | 14 |
| abstract_inverted_index.predictions. | 43 |
| abstract_inverted_index.relationship | 34 |
| abstract_inverted_index.1,897,670,000 | 160 |
| abstract_inverted_index.observations, | 46 |
| abstract_inverted_index.(February-May) | 91 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.1131493 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |