Workflow Detection with Improved Phase Discriminability Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.4316/aece.2024.02003
Workflow detection is a challenge issue in the process of Industry 4.0, which plays a crucial role in intelligent production. However, it faces the problem of inaccurate phase classification and unclear boundary positioning, which are not well resolved in previous works. To solve them, this paper develops a temporal-aware workflow detection framework (TransGAN) which takes advantage of the complementarity between Transformer and graph attention network to improve phase discriminability. Specifically, temporal self-attention is firstly designed to learn the relationship between different positions of feature sequence. Then, multi-scale Transformer is introduced to encode pyramid features, which fuses multiple context cues for discriminative feature representation. At last, contextual and surrounding relations are learned in graph attention network for refined phase classification and boundary localization. Comprehensive experiments are performed to verify the effectiveness of our method. Compared to the advanced AFSD, the accuracy is improved by 2.3 % and 2.1 % when tIoU=0.5 on POTFD and THUMOS-14 dataset, respectively. Empirical study of running speed indicates that the proposed TransGAN can be deployed to real-world industrial environment for workflow detection.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.4316/aece.2024.02003
- OA Status
- gold
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399308949
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399308949Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4316/aece.2024.02003Digital Object Identifier
- Title
-
Workflow Detection with Improved Phase DiscriminabilityWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Mingmei Zhang, He Hu, Zhong LiList of authors in order
- Landing page
-
https://doi.org/10.4316/aece.2024.02003Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.4316/aece.2024.02003Direct OA link when available
- Concepts
-
Workflow, Computer science, Phase (matter), Artificial intelligence, Real-time computing, Data mining, Database, Chemistry, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399308949 |
|---|---|
| doi | https://doi.org/10.4316/aece.2024.02003 |
| ids.doi | https://doi.org/10.4316/aece.2024.02003 |
| ids.openalex | https://openalex.org/W4399308949 |
| fwci | 0.0 |
| type | article |
| title | Workflow Detection with Improved Phase Discriminability |
| biblio.issue | 2 |
| biblio.volume | 24 |
| biblio.last_page | 30 |
| biblio.first_page | 21 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10812 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9861000180244446 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Human Pose and Action Recognition |
| topics[2].id | https://openalex.org/T12205 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9854999780654907 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Time Series Analysis and Forecasting |
| is_xpac | False |
| apc_list.value | 300 |
| apc_list.currency | EUR |
| apc_list.value_usd | 323 |
| apc_paid.value | 300 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 323 |
| concepts[0].id | https://openalex.org/C177212765 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6906846165657043 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[0].display_name | Workflow |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6293184161186218 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C44280652 |
| concepts[2].level | 2 |
| concepts[2].score | 0.49855494499206543 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q104837 |
| concepts[2].display_name | Phase (matter) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.38487738370895386 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C79403827 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3677517771720886 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[4].display_name | Real-time computing |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.36646929383277893 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C77088390 |
| concepts[6].level | 1 |
| concepts[6].score | 0.16132128238677979 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[6].display_name | Database |
| concepts[7].id | https://openalex.org/C185592680 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[7].display_name | Chemistry |
| concepts[8].id | https://openalex.org/C178790620 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[8].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/workflow |
| keywords[0].score | 0.6906846165657043 |
| keywords[0].display_name | Workflow |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6293184161186218 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/phase |
| keywords[2].score | 0.49855494499206543 |
| keywords[2].display_name | Phase (matter) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.38487738370895386 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/real-time-computing |
| keywords[4].score | 0.3677517771720886 |
| keywords[4].display_name | Real-time computing |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.36646929383277893 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/database |
| keywords[6].score | 0.16132128238677979 |
| keywords[6].display_name | Database |
| language | en |
| locations[0].id | doi:10.4316/aece.2024.02003 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S114547688 |
| locations[0].source.issn | 1582-7445, 1844-7600 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1582-7445 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Advances in Electrical and Computer Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310314620 |
| locations[0].source.host_organization_name | Ștefan cel Mare University of Suceava |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310314620 |
| locations[0].source.host_organization_lineage_names | Ștefan cel Mare University of Suceava |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Advances in Electrical and Computer Engineering |
| locations[0].landing_page_url | https://doi.org/10.4316/aece.2024.02003 |
| locations[1].id | pmh:oai:doaj.org/article:d77f87bdad8846cd8facace03131ed95 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Advances in Electrical and Computer Engineering, Vol 24, Iss 2, Pp 21-30 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/d77f87bdad8846cd8facace03131ed95 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5004406113 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-6684-8159 |
| authorships[0].author.display_name | Mingmei Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | M. ZHANG |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101553401 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0849-5795 |
| authorships[1].author.display_name | He Hu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | H. HU |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100428658 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1124-5778 |
| authorships[2].author.display_name | Zhong Li |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Z. LI |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.4316/aece.2024.02003 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Workflow Detection with Improved Phase Discriminability |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W1981780420, https://openalex.org/W2182707996, https://openalex.org/W45233828, https://openalex.org/W2964988449, https://openalex.org/W2397952901, https://openalex.org/W2029380707, https://openalex.org/W4255934811, https://openalex.org/W2465382974, https://openalex.org/W2010229520, https://openalex.org/W2547528905 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.4316/aece.2024.02003 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S114547688 |
| best_oa_location.source.issn | 1582-7445, 1844-7600 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1582-7445 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Advances in Electrical and Computer Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310314620 |
| best_oa_location.source.host_organization_name | Ștefan cel Mare University of Suceava |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310314620 |
| best_oa_location.source.host_organization_lineage_names | Ștefan cel Mare University of Suceava |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Advances in Electrical and Computer Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.4316/aece.2024.02003 |
| primary_location.id | doi:10.4316/aece.2024.02003 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S114547688 |
| primary_location.source.issn | 1582-7445, 1844-7600 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1582-7445 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Advances in Electrical and Computer Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310314620 |
| primary_location.source.host_organization_name | Ștefan cel Mare University of Suceava |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310314620 |
| primary_location.source.host_organization_lineage_names | Ștefan cel Mare University of Suceava |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Advances in Electrical and Computer Engineering |
| primary_location.landing_page_url | https://doi.org/10.4316/aece.2024.02003 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2142261432, https://openalex.org/W2897487229, https://openalex.org/W1978799052, https://openalex.org/W2148340063, https://openalex.org/W3196030222, https://openalex.org/W2978927732, https://openalex.org/W1983364832, https://openalex.org/W2999794487, https://openalex.org/W3169082369, https://openalex.org/W3174836262, https://openalex.org/W4385975679, https://openalex.org/W4210592940, https://openalex.org/W4387460393, https://openalex.org/W3069380482, https://openalex.org/W3111420154, https://openalex.org/W2997314266, https://openalex.org/W3173459793, https://openalex.org/W3125082963 |
| referenced_works_count | 18 |
| abstract_inverted_index.% | 144, 147 |
| abstract_inverted_index.a | 3, 14, 47 |
| abstract_inverted_index.At | 103 |
| abstract_inverted_index.To | 41 |
| abstract_inverted_index.be | 167 |
| abstract_inverted_index.by | 142 |
| abstract_inverted_index.in | 6, 17, 38, 111 |
| abstract_inverted_index.is | 2, 72, 88, 140 |
| abstract_inverted_index.it | 21 |
| abstract_inverted_index.of | 9, 25, 56, 82, 130, 158 |
| abstract_inverted_index.on | 150 |
| abstract_inverted_index.to | 65, 75, 90, 126, 134, 169 |
| abstract_inverted_index.2.1 | 146 |
| abstract_inverted_index.2.3 | 143 |
| abstract_inverted_index.and | 29, 61, 106, 119, 145, 152 |
| abstract_inverted_index.are | 34, 109, 124 |
| abstract_inverted_index.can | 166 |
| abstract_inverted_index.for | 99, 115, 173 |
| abstract_inverted_index.not | 35 |
| abstract_inverted_index.our | 131 |
| abstract_inverted_index.the | 7, 23, 57, 77, 128, 135, 138, 163 |
| abstract_inverted_index.4.0, | 11 |
| abstract_inverted_index.cues | 98 |
| abstract_inverted_index.role | 16 |
| abstract_inverted_index.that | 162 |
| abstract_inverted_index.this | 44 |
| abstract_inverted_index.well | 36 |
| abstract_inverted_index.when | 148 |
| abstract_inverted_index.AFSD, | 137 |
| abstract_inverted_index.POTFD | 151 |
| abstract_inverted_index.Then, | 85 |
| abstract_inverted_index.faces | 22 |
| abstract_inverted_index.fuses | 95 |
| abstract_inverted_index.graph | 62, 112 |
| abstract_inverted_index.issue | 5 |
| abstract_inverted_index.last, | 104 |
| abstract_inverted_index.learn | 76 |
| abstract_inverted_index.paper | 45 |
| abstract_inverted_index.phase | 27, 67, 117 |
| abstract_inverted_index.plays | 13 |
| abstract_inverted_index.solve | 42 |
| abstract_inverted_index.speed | 160 |
| abstract_inverted_index.study | 157 |
| abstract_inverted_index.takes | 54 |
| abstract_inverted_index.them, | 43 |
| abstract_inverted_index.which | 12, 33, 53, 94 |
| abstract_inverted_index.encode | 91 |
| abstract_inverted_index.verify | 127 |
| abstract_inverted_index.works. | 40 |
| abstract_inverted_index.between | 59, 79 |
| abstract_inverted_index.context | 97 |
| abstract_inverted_index.crucial | 15 |
| abstract_inverted_index.feature | 83, 101 |
| abstract_inverted_index.firstly | 73 |
| abstract_inverted_index.improve | 66 |
| abstract_inverted_index.learned | 110 |
| abstract_inverted_index.method. | 132 |
| abstract_inverted_index.network | 64, 114 |
| abstract_inverted_index.problem | 24 |
| abstract_inverted_index.process | 8 |
| abstract_inverted_index.pyramid | 92 |
| abstract_inverted_index.refined | 116 |
| abstract_inverted_index.running | 159 |
| abstract_inverted_index.unclear | 30 |
| abstract_inverted_index.Compared | 133 |
| abstract_inverted_index.However, | 20 |
| abstract_inverted_index.Industry | 10 |
| abstract_inverted_index.TransGAN | 165 |
| abstract_inverted_index.Workflow | 0 |
| abstract_inverted_index.accuracy | 139 |
| abstract_inverted_index.advanced | 136 |
| abstract_inverted_index.boundary | 31, 120 |
| abstract_inverted_index.dataset, | 154 |
| abstract_inverted_index.deployed | 168 |
| abstract_inverted_index.designed | 74 |
| abstract_inverted_index.develops | 46 |
| abstract_inverted_index.improved | 141 |
| abstract_inverted_index.multiple | 96 |
| abstract_inverted_index.previous | 39 |
| abstract_inverted_index.proposed | 164 |
| abstract_inverted_index.resolved | 37 |
| abstract_inverted_index.tIoU=0.5 | 149 |
| abstract_inverted_index.temporal | 70 |
| abstract_inverted_index.workflow | 49, 174 |
| abstract_inverted_index.Empirical | 156 |
| abstract_inverted_index.THUMOS-14 | 153 |
| abstract_inverted_index.advantage | 55 |
| abstract_inverted_index.attention | 63, 113 |
| abstract_inverted_index.challenge | 4 |
| abstract_inverted_index.detection | 1, 50 |
| abstract_inverted_index.different | 80 |
| abstract_inverted_index.features, | 93 |
| abstract_inverted_index.framework | 51 |
| abstract_inverted_index.indicates | 161 |
| abstract_inverted_index.performed | 125 |
| abstract_inverted_index.positions | 81 |
| abstract_inverted_index.relations | 108 |
| abstract_inverted_index.sequence. | 84 |
| abstract_inverted_index.(TransGAN) | 52 |
| abstract_inverted_index.contextual | 105 |
| abstract_inverted_index.detection. | 175 |
| abstract_inverted_index.inaccurate | 26 |
| abstract_inverted_index.industrial | 171 |
| abstract_inverted_index.introduced | 89 |
| abstract_inverted_index.real-world | 170 |
| abstract_inverted_index.Transformer | 60, 87 |
| abstract_inverted_index.environment | 172 |
| abstract_inverted_index.experiments | 123 |
| abstract_inverted_index.intelligent | 18 |
| abstract_inverted_index.multi-scale | 86 |
| abstract_inverted_index.production. | 19 |
| abstract_inverted_index.surrounding | 107 |
| abstract_inverted_index.positioning, | 32 |
| abstract_inverted_index.relationship | 78 |
| abstract_inverted_index.Comprehensive | 122 |
| abstract_inverted_index.Specifically, | 69 |
| abstract_inverted_index.effectiveness | 129 |
| abstract_inverted_index.localization. | 121 |
| abstract_inverted_index.respectively. | 155 |
| abstract_inverted_index.classification | 28, 118 |
| abstract_inverted_index.discriminative | 100 |
| abstract_inverted_index.self-attention | 71 |
| abstract_inverted_index.temporal-aware | 48 |
| abstract_inverted_index.complementarity | 58 |
| abstract_inverted_index.representation. | 102 |
| abstract_inverted_index.discriminability. | 68 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.800000011920929 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.07697279 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |