X-LXMERT: Paint, Caption and Answer Questions with Multi-Modal Transformers Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.18653/v1/2020.emnlp-main.707
Mirroring the success of masked language models, vision-and-language counterparts like VILBERT, LXMERT and UNITER have achieved state of the art performance on a variety of multimodal discriminative tasks like visual question answering and visual grounding. Recent work has also successfully adapted such models towards the generative task of image captioning. This begs the question: Can these models go the other way and generate images from pieces of text? Our analysis of a popular representative from this model family – LXMERT – finds that it is unable to generate rich and semantically meaningful imagery with its current training setup. We introduce X-LXMERT, an extension to LXMERT with training refinements including: discretizing visual representations, using uniform masking with a large range of masking ratios and aligning the right pre-training datasets to the right objectives which enables it to paint. X-LXMERT’s image generation capabilities rival state of the art generative models while its question answering and captioning abilities remains comparable to LXMERT. Finally, we demonstrate the generality of these training refinements by adding image generation capabilities into UNITER to produce X-UNITER.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/2020.emnlp-main.707
- https://www.aclweb.org/anthology/2020.emnlp-main.707.pdf
- OA Status
- gold
- Cited By
- 79
- References
- 94
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3104152799
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3104152799Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/2020.emnlp-main.707Digital Object Identifier
- Title
-
X-LXMERT: Paint, Caption and Answer Questions with Multi-Modal TransformersWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Jaemin Cho, Jiasen Lu, Dustin Schwenk, Hannaneh Hajishirzi, Aniruddha KembhaviList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/2020.emnlp-main.707Publisher landing page
- PDF URL
-
https://www.aclweb.org/anthology/2020.emnlp-main.707.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.aclweb.org/anthology/2020.emnlp-main.707.pdfDirect OA link when available
- Concepts
-
Closed captioning, Computer science, Discriminative model, Generality, Question answering, Artificial intelligence, Generative grammar, Generative model, Modal, Mirroring, Natural language processing, Transformer, Image (mathematics), Psychology, Quantum mechanics, Physics, Psychotherapist, Chemistry, Sociology, Voltage, Polymer chemistry, CommunicationTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
79Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 16, 2023: 21, 2022: 16, 2021: 18Per-year citation counts (last 5 years)
- References (count)
-
94Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3104152799 |
|---|---|
| doi | https://doi.org/10.18653/v1/2020.emnlp-main.707 |
| ids.doi | https://doi.org/10.18653/v1/2020.emnlp-main.707 |
| ids.mag | 3104152799 |
| ids.openalex | https://openalex.org/W3104152799 |
| fwci | 5.77320248 |
| type | article |
| title | X-LXMERT: Paint, Caption and Answer Questions with Multi-Modal Transformers |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 8805 |
| biblio.first_page | 8785 |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9975000023841858 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T10028 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9970999956130981 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Topic Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C157657479 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8941240906715393 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2367247 |
| concepts[0].display_name | Closed captioning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8169131278991699 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C97931131 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6484506726264954 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[2].display_name | Discriminative model |
| concepts[3].id | https://openalex.org/C2780767217 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6284142732620239 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5532421 |
| concepts[3].display_name | Generality |
| concepts[4].id | https://openalex.org/C44291984 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5565876364707947 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1074173 |
| concepts[4].display_name | Question answering |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.546334445476532 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C39890363 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5320390462875366 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[6].display_name | Generative grammar |
| concepts[7].id | https://openalex.org/C167966045 |
| concepts[7].level | 3 |
| concepts[7].score | 0.531093955039978 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[7].display_name | Generative model |
| concepts[8].id | https://openalex.org/C71139939 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5184635519981384 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[8].display_name | Modal |
| concepts[9].id | https://openalex.org/C189645446 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5054473876953125 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q350865 |
| concepts[9].display_name | Mirroring |
| concepts[10].id | https://openalex.org/C204321447 |
| concepts[10].level | 1 |
| concepts[10].score | 0.49033308029174805 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[10].display_name | Natural language processing |
| concepts[11].id | https://openalex.org/C66322947 |
| concepts[11].level | 3 |
| concepts[11].score | 0.45259642601013184 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[11].display_name | Transformer |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.30973243713378906 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C15744967 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[13].display_name | Psychology |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C542102704 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q183257 |
| concepts[16].display_name | Psychotherapist |
| concepts[17].id | https://openalex.org/C185592680 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[17].display_name | Chemistry |
| concepts[18].id | https://openalex.org/C144024400 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[18].display_name | Sociology |
| concepts[19].id | https://openalex.org/C165801399 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[19].display_name | Voltage |
| concepts[20].id | https://openalex.org/C188027245 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[20].display_name | Polymer chemistry |
| concepts[21].id | https://openalex.org/C46312422 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q11024 |
| concepts[21].display_name | Communication |
| keywords[0].id | https://openalex.org/keywords/closed-captioning |
| keywords[0].score | 0.8941240906715393 |
| keywords[0].display_name | Closed captioning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8169131278991699 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/discriminative-model |
| keywords[2].score | 0.6484506726264954 |
| keywords[2].display_name | Discriminative model |
| keywords[3].id | https://openalex.org/keywords/generality |
| keywords[3].score | 0.6284142732620239 |
| keywords[3].display_name | Generality |
| keywords[4].id | https://openalex.org/keywords/question-answering |
| keywords[4].score | 0.5565876364707947 |
| keywords[4].display_name | Question answering |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.546334445476532 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/generative-grammar |
| keywords[6].score | 0.5320390462875366 |
| keywords[6].display_name | Generative grammar |
| keywords[7].id | https://openalex.org/keywords/generative-model |
| keywords[7].score | 0.531093955039978 |
| keywords[7].display_name | Generative model |
| keywords[8].id | https://openalex.org/keywords/modal |
| keywords[8].score | 0.5184635519981384 |
| keywords[8].display_name | Modal |
| keywords[9].id | https://openalex.org/keywords/mirroring |
| keywords[9].score | 0.5054473876953125 |
| keywords[9].display_name | Mirroring |
| keywords[10].id | https://openalex.org/keywords/natural-language-processing |
| keywords[10].score | 0.49033308029174805 |
| keywords[10].display_name | Natural language processing |
| keywords[11].id | https://openalex.org/keywords/transformer |
| keywords[11].score | 0.45259642601013184 |
| keywords[11].display_name | Transformer |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.30973243713378906 |
| keywords[12].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.18653/v1/2020.emnlp-main.707 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.aclweb.org/anthology/2020.emnlp-main.707.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/2020.emnlp-main.707 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101760065 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1148-5413 |
| authorships[0].author.display_name | Jaemin Cho |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Washington |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I114027177, https://openalex.org/I1333535994 |
| authorships[0].affiliations[1].raw_affiliation_string | UNC Chapel Hill |
| authorships[0].institutions[0].id | https://openalex.org/I1333535994 |
| authorships[0].institutions[0].ror | https://ror.org/00qz24g20 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I1333535994 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of North Carolina Health Care |
| authorships[0].institutions[1].id | https://openalex.org/I114027177 |
| authorships[0].institutions[1].ror | https://ror.org/0130frc33 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I114027177 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | University of North Carolina at Chapel Hill |
| authorships[0].institutions[2].id | https://openalex.org/I201448701 |
| authorships[0].institutions[2].ror | https://ror.org/00cvxb145 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I201448701 |
| authorships[0].institutions[2].country_code | US |
| authorships[0].institutions[2].display_name | University of Washington |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jaemin Cho |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | UNC Chapel Hill, University of Washington |
| authorships[1].author.id | https://openalex.org/A5101055775 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jiasen Lu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I114027177, https://openalex.org/I1333535994 |
| authorships[1].affiliations[0].raw_affiliation_string | UNC Chapel Hill |
| authorships[1].institutions[0].id | https://openalex.org/I1333535994 |
| authorships[1].institutions[0].ror | https://ror.org/00qz24g20 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I1333535994 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of North Carolina Health Care |
| authorships[1].institutions[1].id | https://openalex.org/I114027177 |
| authorships[1].institutions[1].ror | https://ror.org/0130frc33 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I114027177 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | University of North Carolina at Chapel Hill |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiasen Lu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | UNC Chapel Hill |
| authorships[2].author.id | https://openalex.org/A5007645100 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1666-6889 |
| authorships[2].author.display_name | Dustin Schwenk |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I114027177, https://openalex.org/I1333535994 |
| authorships[2].affiliations[0].raw_affiliation_string | UNC Chapel Hill |
| authorships[2].institutions[0].id | https://openalex.org/I1333535994 |
| authorships[2].institutions[0].ror | https://ror.org/00qz24g20 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I1333535994 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of North Carolina Health Care |
| authorships[2].institutions[1].id | https://openalex.org/I114027177 |
| authorships[2].institutions[1].ror | https://ror.org/0130frc33 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I114027177 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | University of North Carolina at Chapel Hill |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dustin Schwenk |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | UNC Chapel Hill |
| authorships[3].author.id | https://openalex.org/A5082305994 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1055-6657 |
| authorships[3].author.display_name | Hannaneh Hajishirzi |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I114027177, https://openalex.org/I1333535994 |
| authorships[3].affiliations[0].raw_affiliation_string | UNC Chapel Hill |
| authorships[3].institutions[0].id | https://openalex.org/I1333535994 |
| authorships[3].institutions[0].ror | https://ror.org/00qz24g20 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I1333535994 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of North Carolina Health Care |
| authorships[3].institutions[1].id | https://openalex.org/I114027177 |
| authorships[3].institutions[1].ror | https://ror.org/0130frc33 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I114027177 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | University of North Carolina at Chapel Hill |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hannaneh Hajishirzi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | UNC Chapel Hill |
| authorships[4].author.id | https://openalex.org/A5018421415 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7608-7443 |
| authorships[4].author.display_name | Aniruddha Kembhavi |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I114027177, https://openalex.org/I1333535994 |
| authorships[4].affiliations[0].raw_affiliation_string | UNC Chapel Hill |
| authorships[4].institutions[0].id | https://openalex.org/I1333535994 |
| authorships[4].institutions[0].ror | https://ror.org/00qz24g20 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I1333535994 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of North Carolina Health Care |
| authorships[4].institutions[1].id | https://openalex.org/I114027177 |
| authorships[4].institutions[1].ror | https://ror.org/0130frc33 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I114027177 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | University of North Carolina at Chapel Hill |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Aniruddha Kembhavi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | UNC Chapel Hill |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.aclweb.org/anthology/2020.emnlp-main.707.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | X-LXMERT: Paint, Caption and Answer Questions with Multi-Modal Transformers |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W2081134829, https://openalex.org/W2012196799, https://openalex.org/W2914953798, https://openalex.org/W2016936103, https://openalex.org/W4210416330, https://openalex.org/W1969752774, https://openalex.org/W2551163313, https://openalex.org/W2294049764, https://openalex.org/W2108584188, https://openalex.org/W1980969160 |
| cited_by_count | 79 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 16 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 21 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 16 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 18 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18653/v1/2020.emnlp-main.707 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.aclweb.org/anthology/2020.emnlp-main.707.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/2020.emnlp-main.707 |
| primary_location.id | doi:10.18653/v1/2020.emnlp-main.707 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.aclweb.org/anthology/2020.emnlp-main.707.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/2020.emnlp-main.707 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2964216930, https://openalex.org/W2950776302, https://openalex.org/W2962754210, https://openalex.org/W4298289240, https://openalex.org/W2962974533, https://openalex.org/W3035574324, https://openalex.org/W4297730426, https://openalex.org/W2502312327, https://openalex.org/W3034727271, https://openalex.org/W2899771611, https://openalex.org/W2970869018, https://openalex.org/W4385245566, https://openalex.org/W4226348722, https://openalex.org/W2971074500, https://openalex.org/W3037695135, https://openalex.org/W2972328244, https://openalex.org/W3100427071, https://openalex.org/W2405756170, https://openalex.org/W2913129712, https://openalex.org/W2908510526, https://openalex.org/W2277195237, https://openalex.org/W4297606427, https://openalex.org/W2963518342, https://openalex.org/W2969876226, https://openalex.org/W2945260553, https://openalex.org/W2964121744, https://openalex.org/W3034878914, https://openalex.org/W3016211260, https://openalex.org/W2948433173, https://openalex.org/W2321533354, https://openalex.org/W2896457183, https://openalex.org/W2963981733, https://openalex.org/W2507319105, https://openalex.org/W2183341477, https://openalex.org/W2963836885, https://openalex.org/W2980282514, https://openalex.org/W2331128040, https://openalex.org/W2150333870, https://openalex.org/W3113747735, https://openalex.org/W2970608575, https://openalex.org/W2963403868, https://openalex.org/W2548275288, https://openalex.org/W2944828972, https://openalex.org/W2963163163, https://openalex.org/W2963373786, https://openalex.org/W4299585995, https://openalex.org/W2963341956, https://openalex.org/W2963530300, https://openalex.org/W4297808394, https://openalex.org/W3014611590, https://openalex.org/W2194775991, https://openalex.org/W3035497460, https://openalex.org/W2970127127, https://openalex.org/W2267126114, https://openalex.org/W2975501350, https://openalex.org/W2981721547, https://openalex.org/W2971274815, https://openalex.org/W2979672901, https://openalex.org/W2970231061, https://openalex.org/W2785678896, https://openalex.org/W2964024144, https://openalex.org/W2603777577, https://openalex.org/W2557449848, https://openalex.org/W3023745006, https://openalex.org/W2962770929, https://openalex.org/W2981851019, https://openalex.org/W2613718673, https://openalex.org/W2963800363, https://openalex.org/W2963966654, https://openalex.org/W2842511635, https://openalex.org/W3007759824, https://openalex.org/W2947898088, https://openalex.org/W2966715458, https://openalex.org/W4296979096, https://openalex.org/W2953318193, https://openalex.org/W2899663614, https://openalex.org/W3148140980, https://openalex.org/W2525778437, https://openalex.org/W1861492603, https://openalex.org/W2962749469, https://openalex.org/W3018265077, https://openalex.org/W2969035964, https://openalex.org/W2997591391, https://openalex.org/W2966792645, https://openalex.org/W2108598243, https://openalex.org/W2988975212, https://openalex.org/W2998356391, https://openalex.org/W3001555892, https://openalex.org/W2963799213, https://openalex.org/W639708223, https://openalex.org/W2787579267, https://openalex.org/W2998702515, https://openalex.org/W4301206121, https://openalex.org/W3088059392 |
| referenced_works_count | 94 |
| abstract_inverted_index.a | 22, 71, 116 |
| abstract_inverted_index.We | 98 |
| abstract_inverted_index.an | 101 |
| abstract_inverted_index.by | 168 |
| abstract_inverted_index.go | 57 |
| abstract_inverted_index.is | 84 |
| abstract_inverted_index.it | 83, 134 |
| abstract_inverted_index.of | 3, 17, 24, 47, 66, 70, 119, 143, 164 |
| abstract_inverted_index.on | 21 |
| abstract_inverted_index.to | 86, 103, 128, 135, 157, 175 |
| abstract_inverted_index.we | 160 |
| abstract_inverted_index.Can | 54 |
| abstract_inverted_index.Our | 68 |
| abstract_inverted_index.and | 12, 32, 61, 89, 122, 152 |
| abstract_inverted_index.art | 19, 145 |
| abstract_inverted_index.has | 37 |
| abstract_inverted_index.its | 94, 149 |
| abstract_inverted_index.the | 1, 18, 44, 52, 58, 124, 129, 144, 162 |
| abstract_inverted_index.way | 60 |
| abstract_inverted_index.– | 78, 80 |
| abstract_inverted_index.This | 50 |
| abstract_inverted_index.also | 38 |
| abstract_inverted_index.begs | 51 |
| abstract_inverted_index.from | 64, 74 |
| abstract_inverted_index.have | 14 |
| abstract_inverted_index.into | 173 |
| abstract_inverted_index.like | 9, 28 |
| abstract_inverted_index.rich | 88 |
| abstract_inverted_index.such | 41 |
| abstract_inverted_index.task | 46 |
| abstract_inverted_index.that | 82 |
| abstract_inverted_index.this | 75 |
| abstract_inverted_index.with | 93, 105, 115 |
| abstract_inverted_index.work | 36 |
| abstract_inverted_index.finds | 81 |
| abstract_inverted_index.image | 48, 138, 170 |
| abstract_inverted_index.large | 117 |
| abstract_inverted_index.model | 76 |
| abstract_inverted_index.other | 59 |
| abstract_inverted_index.range | 118 |
| abstract_inverted_index.right | 125, 130 |
| abstract_inverted_index.rival | 141 |
| abstract_inverted_index.state | 16, 142 |
| abstract_inverted_index.tasks | 27 |
| abstract_inverted_index.text? | 67 |
| abstract_inverted_index.these | 55, 165 |
| abstract_inverted_index.using | 112 |
| abstract_inverted_index.which | 132 |
| abstract_inverted_index.while | 148 |
| abstract_inverted_index.LXMERT | 11, 79, 104 |
| abstract_inverted_index.Recent | 35 |
| abstract_inverted_index.UNITER | 13, 174 |
| abstract_inverted_index.adding | 169 |
| abstract_inverted_index.family | 77 |
| abstract_inverted_index.images | 63 |
| abstract_inverted_index.masked | 4 |
| abstract_inverted_index.models | 42, 56, 147 |
| abstract_inverted_index.paint. | 136 |
| abstract_inverted_index.pieces | 65 |
| abstract_inverted_index.ratios | 121 |
| abstract_inverted_index.setup. | 97 |
| abstract_inverted_index.unable | 85 |
| abstract_inverted_index.visual | 29, 33, 110 |
| abstract_inverted_index.LXMERT. | 158 |
| abstract_inverted_index.adapted | 40 |
| abstract_inverted_index.current | 95 |
| abstract_inverted_index.enables | 133 |
| abstract_inverted_index.imagery | 92 |
| abstract_inverted_index.masking | 114, 120 |
| abstract_inverted_index.models, | 6 |
| abstract_inverted_index.popular | 72 |
| abstract_inverted_index.produce | 176 |
| abstract_inverted_index.remains | 155 |
| abstract_inverted_index.success | 2 |
| abstract_inverted_index.towards | 43 |
| abstract_inverted_index.uniform | 113 |
| abstract_inverted_index.variety | 23 |
| abstract_inverted_index.Finally, | 159 |
| abstract_inverted_index.VILBERT, | 10 |
| abstract_inverted_index.achieved | 15 |
| abstract_inverted_index.aligning | 123 |
| abstract_inverted_index.analysis | 69 |
| abstract_inverted_index.datasets | 127 |
| abstract_inverted_index.generate | 62, 87 |
| abstract_inverted_index.language | 5 |
| abstract_inverted_index.question | 30, 150 |
| abstract_inverted_index.training | 96, 106, 166 |
| abstract_inverted_index.Mirroring | 0 |
| abstract_inverted_index.X-LXMERT, | 100 |
| abstract_inverted_index.X-UNITER. | 177 |
| abstract_inverted_index.abilities | 154 |
| abstract_inverted_index.answering | 31, 151 |
| abstract_inverted_index.extension | 102 |
| abstract_inverted_index.introduce | 99 |
| abstract_inverted_index.question: | 53 |
| abstract_inverted_index.captioning | 153 |
| abstract_inverted_index.comparable | 156 |
| abstract_inverted_index.generality | 163 |
| abstract_inverted_index.generation | 139, 171 |
| abstract_inverted_index.generative | 45, 146 |
| abstract_inverted_index.grounding. | 34 |
| abstract_inverted_index.including: | 108 |
| abstract_inverted_index.meaningful | 91 |
| abstract_inverted_index.multimodal | 25 |
| abstract_inverted_index.objectives | 131 |
| abstract_inverted_index.captioning. | 49 |
| abstract_inverted_index.demonstrate | 161 |
| abstract_inverted_index.performance | 20 |
| abstract_inverted_index.refinements | 107, 167 |
| abstract_inverted_index.X-LXMERT’s | 137 |
| abstract_inverted_index.capabilities | 140, 172 |
| abstract_inverted_index.counterparts | 8 |
| abstract_inverted_index.discretizing | 109 |
| abstract_inverted_index.pre-training | 126 |
| abstract_inverted_index.semantically | 90 |
| abstract_inverted_index.successfully | 39 |
| abstract_inverted_index.discriminative | 26 |
| abstract_inverted_index.representative | 73 |
| abstract_inverted_index.representations, | 111 |
| abstract_inverted_index.vision-and-language | 7 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.96861101 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |