"X of Information'' Continuum: A Survey on AI-Driven Multi-dimensional Metrics for Next-Generation Networked Systems Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.19657
The development of next-generation networking systems has inherently shifted from throughput-based paradigms towards intelligent, information-aware designs that emphasize the quality, relevance, and utility of transmitted information, rather than sheer data volume. While classical network metrics, such as latency and packet loss, remain significant, they are insufficient to quantify the nuanced information quality requirements of modern intelligent applications, including autonomous vehicles, digital twins, and metaverse environments. In this survey, we present the first comprehensive study of the ``X of Information'' continuum by introducing a systematic four-dimensional taxonomic framework that structures information metrics along temporal, quality/utility, reliability/robustness, and network/communication dimensions. We uncover the increasing interdependencies among these dimensions, whereby temporal freshness triggers quality evaluation, which in turn helps with reliability appraisal, ultimately enabling effective network delivery. Our analysis reveals that artificial intelligence technologies, such as deep reinforcement learning, multi-agent systems, and neural optimization models, enable adaptive, context-aware optimization of competing information quality objectives. In our extensive study of six critical application domains, covering autonomous transportation, industrial IoT, healthcare digital twins, UAV communications, LLM ecosystems, and metaverse settings, we illustrate the revolutionary promise of multi-dimensional information metrics for meeting diverse operational needs. Our survey identifies prominent implementation challenges, including ...
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.19657
- https://arxiv.org/pdf/2507.19657
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417266647
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417266647Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.19657Digital Object Identifier
- Title
-
"X of Information'' Continuum: A Survey on AI-Driven Multi-dimensional Metrics for Next-Generation Networked SystemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-25Full publication date if available
- Authors
-
Beining Wu, Jun Huang, Shui YuList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.19657Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.19657Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.19657Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417266647 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.19657 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.19657 |
| ids.openalex | https://openalex.org/W4417266647 |
| fwci | |
| type | preprint |
| title | "X of Information'' Continuum: A Survey on AI-Driven Multi-dimensional Metrics for Next-Generation Networked Systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.19657 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.19657 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.19657 |
| locations[1].id | doi:10.48550/arxiv.2507.19657 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.19657 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5068821694 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6446-5814 |
| authorships[0].author.display_name | Beining Wu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wu, Beining |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5081625886 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6862-4122 |
| authorships[1].author.display_name | Jun Huang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huang, Jun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5005228053 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4485-6743 |
| authorships[2].author.display_name | Shui Yu |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Yu, Shui |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.19657 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | "X of Information'' Continuum: A Survey on AI-Driven Multi-dimensional Metrics for Next-Generation Networked Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-12T09:26:17.032656 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.19657 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.19657 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.19657 |
| primary_location.id | pmh:oai:arXiv.org:2507.19657 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.19657 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.19657 |
| publication_date | 2025-07-25 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 82 |
| abstract_inverted_index.In | 65, 151 |
| abstract_inverted_index.We | 98 |
| abstract_inverted_index.as | 36, 132 |
| abstract_inverted_index.by | 80 |
| abstract_inverted_index.in | 113 |
| abstract_inverted_index.of | 2, 23, 53, 74, 77, 146, 155, 180 |
| abstract_inverted_index.to | 46 |
| abstract_inverted_index.we | 68, 175 |
| abstract_inverted_index.... | 196 |
| abstract_inverted_index.LLM | 170 |
| abstract_inverted_index.Our | 124, 189 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.UAV | 168 |
| abstract_inverted_index.``X | 76 |
| abstract_inverted_index.and | 21, 38, 62, 95, 138, 172 |
| abstract_inverted_index.are | 44 |
| abstract_inverted_index.for | 184 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.our | 152 |
| abstract_inverted_index.six | 156 |
| abstract_inverted_index.the | 18, 48, 70, 75, 100, 177 |
| abstract_inverted_index.IoT, | 164 |
| abstract_inverted_index.data | 29 |
| abstract_inverted_index.deep | 133 |
| abstract_inverted_index.from | 9 |
| abstract_inverted_index.such | 35, 131 |
| abstract_inverted_index.than | 27 |
| abstract_inverted_index.that | 16, 87, 127 |
| abstract_inverted_index.they | 43 |
| abstract_inverted_index.this | 66 |
| abstract_inverted_index.turn | 114 |
| abstract_inverted_index.with | 116 |
| abstract_inverted_index.While | 31 |
| abstract_inverted_index.along | 91 |
| abstract_inverted_index.among | 103 |
| abstract_inverted_index.first | 71 |
| abstract_inverted_index.helps | 115 |
| abstract_inverted_index.loss, | 40 |
| abstract_inverted_index.sheer | 28 |
| abstract_inverted_index.study | 73, 154 |
| abstract_inverted_index.these | 104 |
| abstract_inverted_index.which | 112 |
| abstract_inverted_index.enable | 142 |
| abstract_inverted_index.modern | 54 |
| abstract_inverted_index.needs. | 188 |
| abstract_inverted_index.neural | 139 |
| abstract_inverted_index.packet | 39 |
| abstract_inverted_index.rather | 26 |
| abstract_inverted_index.remain | 41 |
| abstract_inverted_index.survey | 190 |
| abstract_inverted_index.twins, | 61, 167 |
| abstract_inverted_index.designs | 15 |
| abstract_inverted_index.digital | 60, 166 |
| abstract_inverted_index.diverse | 186 |
| abstract_inverted_index.latency | 37 |
| abstract_inverted_index.meeting | 185 |
| abstract_inverted_index.metrics | 90, 183 |
| abstract_inverted_index.models, | 141 |
| abstract_inverted_index.network | 33, 122 |
| abstract_inverted_index.nuanced | 49 |
| abstract_inverted_index.present | 69 |
| abstract_inverted_index.promise | 179 |
| abstract_inverted_index.quality | 51, 110, 149 |
| abstract_inverted_index.reveals | 126 |
| abstract_inverted_index.shifted | 8 |
| abstract_inverted_index.survey, | 67 |
| abstract_inverted_index.systems | 5 |
| abstract_inverted_index.towards | 12 |
| abstract_inverted_index.uncover | 99 |
| abstract_inverted_index.utility | 22 |
| abstract_inverted_index.volume. | 30 |
| abstract_inverted_index.whereby | 106 |
| abstract_inverted_index.analysis | 125 |
| abstract_inverted_index.covering | 160 |
| abstract_inverted_index.critical | 157 |
| abstract_inverted_index.domains, | 159 |
| abstract_inverted_index.enabling | 120 |
| abstract_inverted_index.metrics, | 34 |
| abstract_inverted_index.quality, | 19 |
| abstract_inverted_index.quantify | 47 |
| abstract_inverted_index.systems, | 137 |
| abstract_inverted_index.temporal | 107 |
| abstract_inverted_index.triggers | 109 |
| abstract_inverted_index.adaptive, | 143 |
| abstract_inverted_index.classical | 32 |
| abstract_inverted_index.competing | 147 |
| abstract_inverted_index.continuum | 79 |
| abstract_inverted_index.delivery. | 123 |
| abstract_inverted_index.effective | 121 |
| abstract_inverted_index.emphasize | 17 |
| abstract_inverted_index.extensive | 153 |
| abstract_inverted_index.framework | 86 |
| abstract_inverted_index.freshness | 108 |
| abstract_inverted_index.including | 57, 195 |
| abstract_inverted_index.learning, | 135 |
| abstract_inverted_index.metaverse | 63, 173 |
| abstract_inverted_index.paradigms | 11 |
| abstract_inverted_index.prominent | 192 |
| abstract_inverted_index.settings, | 174 |
| abstract_inverted_index.taxonomic | 85 |
| abstract_inverted_index.temporal, | 92 |
| abstract_inverted_index.vehicles, | 59 |
| abstract_inverted_index.appraisal, | 118 |
| abstract_inverted_index.artificial | 128 |
| abstract_inverted_index.autonomous | 58, 161 |
| abstract_inverted_index.healthcare | 165 |
| abstract_inverted_index.identifies | 191 |
| abstract_inverted_index.illustrate | 176 |
| abstract_inverted_index.increasing | 101 |
| abstract_inverted_index.industrial | 163 |
| abstract_inverted_index.inherently | 7 |
| abstract_inverted_index.networking | 4 |
| abstract_inverted_index.relevance, | 20 |
| abstract_inverted_index.structures | 88 |
| abstract_inverted_index.systematic | 83 |
| abstract_inverted_index.ultimately | 119 |
| abstract_inverted_index.application | 158 |
| abstract_inverted_index.challenges, | 194 |
| abstract_inverted_index.development | 1 |
| abstract_inverted_index.dimensions, | 105 |
| abstract_inverted_index.dimensions. | 97 |
| abstract_inverted_index.ecosystems, | 171 |
| abstract_inverted_index.evaluation, | 111 |
| abstract_inverted_index.information | 50, 89, 148, 182 |
| abstract_inverted_index.intelligent | 55 |
| abstract_inverted_index.introducing | 81 |
| abstract_inverted_index.multi-agent | 136 |
| abstract_inverted_index.objectives. | 150 |
| abstract_inverted_index.operational | 187 |
| abstract_inverted_index.reliability | 117 |
| abstract_inverted_index.transmitted | 24 |
| abstract_inverted_index.information, | 25 |
| abstract_inverted_index.insufficient | 45 |
| abstract_inverted_index.intelligence | 129 |
| abstract_inverted_index.intelligent, | 13 |
| abstract_inverted_index.optimization | 140, 145 |
| abstract_inverted_index.requirements | 52 |
| abstract_inverted_index.significant, | 42 |
| abstract_inverted_index.Information'' | 78 |
| abstract_inverted_index.applications, | 56 |
| abstract_inverted_index.comprehensive | 72 |
| abstract_inverted_index.context-aware | 144 |
| abstract_inverted_index.environments. | 64 |
| abstract_inverted_index.reinforcement | 134 |
| abstract_inverted_index.revolutionary | 178 |
| abstract_inverted_index.technologies, | 130 |
| abstract_inverted_index.implementation | 193 |
| abstract_inverted_index.communications, | 169 |
| abstract_inverted_index.next-generation | 3 |
| abstract_inverted_index.transportation, | 162 |
| abstract_inverted_index.four-dimensional | 84 |
| abstract_inverted_index.quality/utility, | 93 |
| abstract_inverted_index.throughput-based | 10 |
| abstract_inverted_index.information-aware | 14 |
| abstract_inverted_index.interdependencies | 102 |
| abstract_inverted_index.multi-dimensional | 181 |
| abstract_inverted_index.network/communication | 96 |
| abstract_inverted_index.reliability/robustness, | 94 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |